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We consider a two-dimensional boundary-value problem of magnetoelasticity for a half-space weakened by 
tunnel stress concentrators (cracks, holes) in the presence of a static magnetic field. The mechanical stim- 
ulus is taken as a magnetoelastic shear wave incident from infinity or a shear load that varies harmonically 
in time and is prescribed on the edges of the crack or hole. The problem reduces to a singular integral 
equation that can be solved numerically by the method of mechanical quadratures. We give the results of 
computation of the coefficient of stress intensity Kl l l  for a slit and the stress concentration on the edge 
of a hole. We conclude that it is necessary to take account of electromagnetic effects in estimating the 
strength of diamagnetic or paramagnetic bodies. Four figures. Bibliography: 6 titles. 

If a diamagnetic (resp. paramagnetic)  body in a static magnetic field is subjected to a mechanical stimulus, 
induced (eddy) currents arise in the body,  leading to Lorentz solid forces. Taking account of these forces 
gives an additional tensor, the Maxwell stress tensor, which introduces significant corrections into the 
stressed state of the body. 

In what follows we consider a boundary-value problem of magnetoelastici ty for a half-space weakened 
by tunnel stress concentrators (cracks or holes) 

Starting from the relations of linear magnetoelastici ty [1-3], ascribing ideal conductivi ty to the medium 

and assuming the electromagnetic field is quasi-static ( 2 =  0, cOB/Ot = 0) we have a complete system of 
equations 

0 = 
~V 2 ~ +(~ + #)graddiv  ~ +/zr h x ~r ~ = p 0t 2 ; (1) 

0 u  
h = c u r l ( ~  x s176 ~ = - # ~ ( - - ~ - x  ~ 0 ) ;  [h ] , -=0 ,  [#~ h],, = 0 ;  

0 
[~ij + t i j ] n j  B_ X i n ,  V 2 -~ 0 2 + 0 2 + 0 2 , Oi = 

OX i ' 

(i,j,k=l,3). 

Here ~r 0 (H0; 0 0 = H~, H 3 ) is the intensity of the external magnetic field, -e and h are the fluctuations of the 
electric and magnetic fields, u are the mechanical displacements, aij and tij  are respectively the mechanical 
and Maxwell stresses, Xin  are the components of the external load, # ,  is the magnet ic  permeabili ty of 
the substance, p is the density of the substance, /z and ,k are the Lam~ constants,  5ij is the Kronecker 

�9 symbol, and xi are rectangular Cartesian coordinates. The  symbol [*] denotes the jump in a quanti ty at 
the interface line of the two media. 

We assume that  the magnetoelastic med ium occupies the half-space x2 _> 0 (Fig. 1) and contains 
tunnel concentrators of crack type L i ( j  = 1, k) or hole type li (i = 1---,-~) along x3. Suppose the half-space 

is adjacent to a vacuum in which there is a static magnetic  field H 0 = (0; H i ;  0), H~ = const. We shall 
take the mechanical stimulus to be a shear load Xan = Re (Xae- i~ t ) ,  .7(3 = X3(2~1; x2) acting on the surface 
of the cavity and harmonic with respect to time or a magnetoelastic displacement wave 

u ~ = Re(U~ (2) 
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Fig .  2 

U ~ = Uexp(-iT(xl cos/~ + x2 sin/3)), U = const; 

72 w vF~ X2 = / ~ H 0  2 
7 =  ~ / I + x  2sin 2fl' 72=~-2,  c 2 =  , ~ , 

where 3 is the angle between the normal  to the front of the incident wave and the  oxl-axis and w is the 
cyclic frequency. 

Under these conditions a wave-type mechanical  and electromagnetic fields arise in the medium cor- 
responding to a state of anti-planar deformation.  The complete system of equat ions has the following 
form: 

the equations of motion : 
102u3 

V2ua + X2022ua = c 20~2 ; 

the components  of the electromagnetic field 

O~l 3 
ha = h2 = O, ha = HoO2U3, e 1 = - # e H o - ~ ,  e 2 = e 3 = O; 

the boundary  conditions on the edge of the cavity 

~r13 cos r  + cr23 s i n e  = X3n; h i = h3; 0"i3 = / lOi l l3 .  

(3) 

(4) 

(5) 

Here r is the angle between the positive normal  to the edge and the oxl-axis (Fig. 1); the asterisk refers 
to the cavity of the defect. 

Consider the half-space with tunnel cracks Lj (j  = 1, k) along x3. In accordance with what was shown 

above there is a static magnetic  field in it H 0 = (0; H0;0), H0 = poH~/#e, where /~0 is the magnetic 
permeability of a vacuum. 

Under mechanical stimulus a stat ionary wave (oscillation) process takes place in the body, and the 
components  of the fields al3, t23 (i = 1, 2) and ha have a characteristic fractional-power singularity at the 
ends of the defects, leading to the need to take account of the influence of e lectromagnet ic  effects on the 
stress of the body. 

The  mechanical field in the half-space with defect is composed of the incident  wave field (2), the 
reflected wave field 

u~ = Re(U~e-lWt), U3 x = U e x p ( - i T ( z ,  c o s / 3 -  x2 sin/3)) (6) 

and the scattered field, which, generalizing [4], we represent in the form 

u3 = Re (U3e-i~t), (7) 

where 

1 / p ( r  o~lE(r162 - O~lE(r } + / q ( r 1 6 2  zl)ds, v'3( 1; x2) = 
L L 
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ix2 
E(Cl ;Z l ) - - - -  H(1)(~/2F1)-~ - H ~ l ) ( ^ / 2 r ; ) ,  Zl -~Xl  -~- Cl ~- ~1 -~ 

k 
r l  = [ffl -- ZI ] r ;  = [~1 --  Zl [, ff : ~1 "~- i~2 E A = U i j ,  ' j = l  

p(() = [pi((), ( ELj} ,  q(() = {qj((), ( ELj}  are the unknown "densities," H(~l)(x) is the Hankel function 
of first kind and order n, and ds is the element of arc length along the boundary of the curve L. The density 
p(~) is equal to - 0.5[U3(~)], where [U3(()] is the jump in the displacement amplitude at L. 

The function (7) is a solution of Eq. (3) that automatically satisfies the condition a23 = 0 on the 
boundary of the half-space, and also the radiation condition. 

Taking account of (2), (6), and (7), we represent the boundary condition (5) as 

C(~/)) { 0__~111 (U 3 _[_U 0 _[_ U1)} -I- 1 q-= (s) 

Here the upper sign corresponds to the left edge of L i (in moving from its beginning point a i to its endpoint 
bi) , ko is the angle between the positive normal to the left edge of L i and the oxl-axis. Taking account of 
the continuous extension of the vector of mechanical stresses across the cuts and carrying out the operations 
prescribed by (8), we find the following connection between the densities: 

)/2 sin 2r dp 
q(() = (9) 

4i ~ d s  " 

Substituting the values of the functions occurring in the boundary conditions that are reached in the 
limit on the left edge of the cut, we arrive at the following singular integro-differential equation: 

/ r + f r = N(r (lO) 
L L 

where 

r :-~10 ) + 27rx/1 + X 2 Re \ r  - -  r 

i72 X 2 sin 2~b 
[HI (72rio)Re (c(r -i~'~ + H~X)(v2r~o)Re(c(r176 

+ 4 ~  
.),2 

G(r (0) = --~ii { H2( 72rlo )Im ( a( r )C( r )e2'~'~ ) + Im ( a( r )C( r ) )( H~l) (72rlo ) + H~l)(72r~'o)) 

+ H~') (72r;o)Im (a(r162176 

N(r = -2Xa + 2i7(cos(r - fl)U ~ + cos(r + fl)UaI); f(~) = [Ua(()], (0 6 L, a(r = dc(r162 

r i o  - -  Ir - r  = a r g ( ( 1  - ( l o ) ;  r ; o  = [(~1 - q ol; = a r g ( ~ l  - -  •1o). 

The integral equation must be solved jointly with the additional condition 

f dr = O. ( 1 1 )  

L 

Relations (10) and (11) determine the solution completely in the class h0 of functions that are un- 
bounded at the endpoints of L 1 [5]. 
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We shall now obtain a formula for determining the coefficient of stress intensity at the vertices of the 
defect. We introduce a parametr izat ion of the contour Lj: 

C=C(6), Co=C(6o), -1~6,60<:1. 

Accordingly we put  

df  fl(6) s'(6) = ds $2((5) 6 H I - l ,  1]. (12) = 

The total coefficient of intensity, counting both  the mechanical and the Maxwell parts of the stress 
tensor, is determined by the singular par t  of the expression 

Qn = (S13 + 7'13) cos r  + (S13 + 7"23) s i n e  (13) 

according to the formulas 

an = Re(Qne-i '~t) ,  tij = Re (T i j e - i " t ) ,  o'ij = R e ( S / j e - i " t ) .  

By (1), (4), and (5) we can write 

Qn = Iz(O1U3 cos r  -[- (1 H- X2)c92U3 sin ~/,). 

Taking account of the asymptotics  of Qn, we find the total coefficient of stress intensity: 

KISII = lim 2~rRe (Qne -iw') = - p~/Tr(1 H- X 2) 2 st(X/~ ]~(:FI)[ cos(~'t - arg ~(:F1)). (14) 

The coefficient of mechanical  stress intensity has the form 

K I I I =  lim 2v/~-r~rRe (S,~e-i~'t); 

S~, = $13 cos ~bc + $23 sin Ce = 2X/2zrs'(:]:l)#f~(~:l) ,,(V/1 + X2 + ~ X  4 sin 2 2r {" + X 2 sin 2 r162 

(15) 

where r is the angle of the normal  to the left edge of Lj at the vertex c (where c is either aj or bj). 
As a first example we consider an unbounded  space weakened by a tunnel straight-line crack occupying 

the interval [- / ;  l] of the x2-axis. The surface of the crack is free of forces, and a magnetoelast ic  wave (2) 
radiates from infinity along the xl-axis. The  singular equation (10), in which the kernels corresponding to 
the coupled source were assumed zero, was solved numerically by the method  of mechanical  quadratures 
[6]. 

Figure 2 shows the results of computat ions  of the quant i ty  o~ + = ~ -  = c~. T h e  coefficient of stress 
intensity K~I I can be expressed in terms of o~ ~: by the following formula (where 2l is the  length of the crack) 

K~II = Phv/-~o~:cos(wt - a rgo~) ,  Ph = - i # V T s i n f l .  (16) 

Curves i, 2, S are constructed for the values X = 1, 0.5, and 0 respectively (l 1) The dots give the 
results obtained by a different me thod  [1]. 

As a second example consider the half-space x2 >_ 0 weakened by a horizontal crack (2l = 2) for the 
case when there is no incident wave and on the edges of the crack there is a t ime-harmonic  shear load 
X~n = Re(X3e-i~t) ,  X3 = const. The  variation of the quant i ty  ~+ = ~ -  = a in the  same correspondence 
as above is presented in Fig. 3. We assume tha t  the distance of the crack from the boundary  x2 = 0 is equal 
to its length. The  coefficient of stress intensity Kni  is determined by formula (16), in  which it is necessary 
to set X3 in place of Ph. 
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Now let the half-space x2 _> 0 adjacent to a vacuum be weakened by cylindrical hole-cavities li along 
xa (Fig. 1). Under  the conditions of the formulation given above the mechanical field in the half-space is 
composed of the field of the incident wave (2), the field of the reflected wave (6), and the scattered field, 
which we represent as 

ua = Re(Uae-iWt), l =  ~ li, (17) 
i=1 

where 
f 

U3(Xl; X2) = ] p(~)(H~l)(72r1) q- H~1)(72r~))ds, 
L 

and p(~) = {pl (~), ( E 11} is the unknown "density." The integration is carried out counterclockwise. The 
representation (17) automatically satisfies the condition ~r2a = 0 on the boundary of the half-space and the 
radiation condition, and the function ua is a solution of Eq. (3). 

We represent the boundary condition (5) on l in amplitudes 

(s,~ + s~ + sh )cos r  + (&~ + s~ + s~)  sin r = x~. (18) 

0 and ah- Here Sia, S~ and S~3 are respectively the ampli tudes of the quantities gi3, ai3, 
Comput ing  the stresses taking account of (2), (6), and (17), we subst i tute  their limiting values as 

z ---* (0 E l into the boundary condition (18) and arrive at the following integral equation with respect to 
p((): 

P((0) + / p ( f ) G ( ( ;  (o) ds = N((0),  (19) 

1 

where 

2 (_._C(_~O) ~ t _ _ ~ _ ~ ( H 1  -- ioqo " * 
G((; r - irq(r \r - r ] + q(W0) (7: r l0)Re (c(r ) + H~])(72r;o)Re(c(r176 

N(ff) = /~q-~Xa  + - - ~ ( c o s ( f l  - r  ~ + cos(fl + r 77(r = - 2 i I m  

In the case when there is no preliminary magnetic  field (X = 0) Eq. (19) is a Fredholm integral equation 
of second kind. And if X > 0, we obtain a singular integral equation of second kind. 

The  shear stresses on the plane perpendicular to the edge of the hole are determined by the formulas 

rg=--(a13q-cr~ q-~rla q-t13)sinCq-(~r23q-a~ q-a~3 q-t2a)cosr r s =  Re(Te-i~'t).  (20) 

In our case the Maxwell stresses are 

t13 = O, t23 = 12eH2~2~3. (21) 
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Applying relations (21), (17), (6), and (2) in formula (20), we obtain the ampli tude of the stresses at 
the point ~0 E l: 

T = - 2 i / z v / 1  + X2p(r i e c(r ~ f \ a ( r  q- i#7(sin(r - fl)U ~ + sin(C0 + fl)U 1) + p( r  ~0) ds; 

1 

K((;r  - 2i/zv/i" + X2Im ( .C( r  ~ _/~72(Hl(v2r10)b + H[l)(72rto)b*). 
7r k ~ l  - r ] 

(22) 

Here 
b = cos al0 s ine0 - X/i-+ X 2 cosr sin c~10; 

b* = cos a~0 sin r - V/Y + X 2 cos r sin a~0. 

As an example we consider a half-space weakened by a cavity of elliptic cross-section whose parametric 
equation is ~1 = al cosqo, ~2 = h + bl sinqo. There is no incident wave from infinity, but there is a shear 
load Xs,, = Re(Xse-/~~ X3 = X ~ sinqo, X ~ = const, on the surface of the cavity. Figure 4 shows the 
results of computing the quanti ty (T) = T / X  ~ at the point ~ = 0 for h = 1.75, b l /a l  = 0.75. The curves 
are arranged in the same correspondence as above, and R = (al + bl )/2. 

Thus taking account of the preliminary magnetic field is necessary for a reliable estimate of the stress 
of a body with stress concentrators. 

L i t e r a t u r e  C i t e d  

1. Y. Shindo, "Diffraction of antiplane shear waves by a finite crack in the presence of a magnetic field," 
Z. Angew. Math. Mech., 56, No. 1, 33-41 (1976). 

2. W. Nowacki, Electromagnetic Effects in Solids [Russian translation], Moscow (1986). 
3. V. Z. Pat ton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoceramic and Electrically Con- 

ducting Media [in Russian], Moscow (1988). 
4. L. A. Fil'shtinskii, "The interaction of stress waves with curvilinear tunnel longitudinal shear cracks in 

a half-space," Prikl. Mat. Mekh., 46, No. 3, 482-487 (1982). 
5. N. I. Muskhelishvili, "Singular Integral Equations," in: Boundary-value Problems of the Theory of 

Functions and Certain Applications to Mathematical Physics [in Russian], Moscow (1962). 
6. S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations [in Russian], 

Moscow (1985). 

1204 


