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Using a positive semidefinite operator technique we deduced exact ground states for a modified dia-

mond chain described by a non-integrable Hubbard model with on-site repulsion. Our results are valid for 

arbitrary length of the chain and strength of the Hubbard interaction. For the analyzed parameter space 

region of the quasi 1D chain structure we found that two flat bands are present in the bare band structure 

of the system, both for zero and for a fixed value of magnetic field. We obtained ground states of nonmag-

netic and ferromagnetic insulator type and studied their physical properties. 
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1. INTRODUCTION  
 

The investigation of nanostructure objects with 

itinerant electrons is one of the most quickly progress-

ing fields in the modern material science. These sys-

tems present a drastic change of physical properties 

under given conditions, e.g. fixed external magnetic 

field or given site-selective gate potential [1, 2]. As spe-

cific nanostructures, quasi 1D structures have been 

intensively studied in the last years. Among these, the 

non-integrable systems (the number of degrees of free-

dom is much higher than the number of constants of 

motion) become to be more and more investigated since 

these are closely placed to real systems encountered in 

nature. Among these systems, ladder structures [3], or 

chain structures [4] are special in view, from which, we 

concentrate here on the last group. The chains, consid-

ered periodic structures holding a closed polygon type 

of base as a repeat unit, have been gradually studied 

following mainly the increasing number of atoms in the 

base. On this line triangular [5, 6], quadrilateral 

[1, 7, 8], pentagonal [9-12], and hexagonal [13, 14] 

chains have been investigated. In this frame, we ana-

lyze below chains with quadrilateral base as electron 

systems where the interaction between the electrons is 

the Hubbard on-site interaction originating from the 

Coulomb repulsion. 

Our goal is to find exact ground-state wave func-

tions for arbitrary strength of the interaction, thus we 

do not use perturbation theory or any other approxima-

tions. It is worth to mention that the full exact solution 

of the Hubbard model is still unknown for dimensions 

larger than 1. In the paper [1] a new method was de-

veloped and applied for the diamond Hubbard chain. In 

this paper we use the same method to investigate a 

similar, but modified system. The modifications consist 

in the introduction of external links, which pushes the 

system more closely to experimental realizations, and 

as shown by us, actually shift the emergence regions of 

different possible phases in the parameter space. 

The remaining part of the paper is constructed in 

the following way. Section 2 contains the description of 

the studied system, more concretely the chain structure 

and the Hamiltonian. In Section 3 we deal with the 

noninteracting band-structure, then explain the es-

sence of the positive semidefinite operator method and 

perform the transformation. In Section 4 we construct 

the ground state wave functions and analyze the physi-

cal properties of them. We summarize the essence of 

the paper in Section 5.  

 

2. THE STUDIED SYSTEM 
 

Fig. 1 shows the modified Hubbard diamond chain 

we analyzed. The sites of the chain for the ith cell are 

denoted by i + rs , where s = 1, 2, 3 denoting in-cell posi-

tions represents also the sublattice index.  
 

 
 

Fig. 1 – The diamond Hubbard chain with external links. The 

cell defined at the site i contains 4 sites placed at i, i + r1, i + r2 

and i + r3. The Bravais vector is denoted by a. t, t3, t , t , are in 

order the nearest-neighbor (t, t3), the next nearest-neighbor 

hopping matrix element – parallel and perpendicular to the 

line of the chain. ε0, ε1 ε2 and ε3 are on-site potentials, at the 

sites i, i + r1, i + r2 and i + r3, respectively. B is the external 

magnetic field perpendicular to the line of the chain, while A 

represents the corresponding vector potential 
 

The Bravais vector of the lattice is a, horizontal in 

Fig. 1 NC is the number of unit cells, N is the number of 

electrons, NS is the number of sites, and one has 

NS = 4NC. The Hamiltonian of the system is the follow-

ing: 

http://jnep.sumdu.edu.ua/index.php?lang=en
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The operator †

,ic  creates an electron with spin  in 

at site i, †

, , ,,i i in c c  is the particle number operator, 

while 
 

 , ,1

sN

i iiUH n n  

 

is the operator of the on-site Coulomb repulsion, U > 0. 

The movements of the electrons from site to site are 

described by the hopping matrix elements t, t , t , and 

t3. The first characterizes the nearest-neighbor hop-

pings (except for sites i + r3) while t  and t  the second 

nearest neighbor terms parallel and perpendicular to a, 

respectively. The last hopping term t3 refers to move-

ments along the external leg, and the epsilons are one-

site one particle potentials. The system is placed in an 

external magnetic field perpendicular to the plane of 

the chain and described by the Peierls phase factor . 

During the calculations arbitrary but fixed N and peri-

odic boundary conditions are taken into account along 

the chain. 

We note that the presence of the external legs into 

the system allows the use of external site selective gate 

potentials in order to modify and easily manipulate the 

potential 3  and therefore the physical behavior of the 

system. 

 

3. ABOUT THE METHOD  
 

First we calculate the non-interacting band-

structure of the system. For this we have to write the 

Hamiltonian without the HU term into the k-space by 

Fourier transformation. 
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Then, by diagonalizing via the secular equation, we 

derive an algebraic equation. This contains the four 

unknown energies, as we have four sites in the primi-

tive cell. The solutions of this equation as a function of 

k give the four bands of the bare band structure. After 

solving the secular equation by a commercial computer 

program we obtained that the lowest two bands are 

always flat. In Fig. 2 one can see an example for the 

noninteracting band-structure of the system. At 0.7 

there are two coincident flat bands, indicated with 

green and black colors in Fig. 2 

 

 
 

Fig. 2 – An example for the noninteracting band-structure 

at   0. Only the positive values of ka is shown along the 
horizontal axis because of symmetry. The border of the first 

Brillouin zone is at ka  . On the vertical axis the energy 
E is normalized by t 

 

To find the GS of the interacting system, we use the 

method of positive semidefinite operators. A Hermitian 

operator is called positive semidefinite if its spectrum is 

nonnegative, i.e. its lowest eigenvalue is zero or posi-

tive. Therefore if H+ is a positive semidefinite Hamilto-

nian and we have an eigenvector of H+ with zero eigen-

value, then this vector belongs to the ground-state (GS) 

subspace of H+. Suppose that we manage to write the H 

Hamiltonian of the interacting system in the form 
 

 H  H+ + C, (1) 
 

where H+ is positive semidefinite and C is a con-

stant which depends on the parameters of the Hamil-

tonian. Now if 
g

|  is the most general element of the 

kernel of H+, then 
g

|  is the GS vector of H and the 

corresponding GS energy is C. Thus in our method we 

transform the Hamiltonian into the form (1) and calcu-

late the kernel of H+. 

In order to perform the transformation first we de-

fine new operators 
 

 
1 2, 1 , 2 , 3 , 4 ,i i i r i a i rA a c a c a c a c  

 
1 2

† † † † †* * * *
1 2 3 4, , ,, ,i i i ai r i rA a c a c a c a c  

 

and 
 

 
3, 1 , 2 ,i i i rB b c b c  

 
3

† † †* *
1 2, , ,i i i rB b c b c  

 

where the ai and bi numerical coefficients are un-

known at this stage and must be calculated during the 

transformation. In Fig. 3 we illustrate which lattice 

sites are covered by the block-operators Ai and Bi. 

We can calculate the product of these operators 
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and it is easy to calculate †
,, iiB B similarly. These 

products are obviously positive semidefinite and consist 

of a sum of products of creation and annihilation opera-

tors †c c , which are present in the Hamiltonian as 

well. It is possible to produce the H+ operator as a sum 

of operator-products:  
   

† †
, ,, ,

1

( )
N

i ii i

i

H A A B B  

 

 

 
 

Fig. 3 – Illustration of the Ai and Bi block operators. The 
pink square containing sites i, i + r1, i + r2, i + a, repre-

sents the Ai operator, while the thick blue vertical line con-

necting sites i, i + r3 represents the Bi operator  
 

The transformation of the noninteracting part of the 

starting H in the form (1) using the H+ presented above 

is valid if the coefficient of each †c c  operator-product 

is the same in the original Hamiltonian and in the ex-

pression † †
, ,, ,1

( )
N

i ii ii
A A B B . This provides us 

matching equations which must be solved, and which 

in the present case have the form: 
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We have found two families of solutions for this sys-

tem of equations, one with  = 0 and the other with  = .  

The first family is valid for zero external magnetic fi-

eld and gives the following conditions for the parameters: 
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The solution itself for ai and bi prefactors has the form: 
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The ground state energy is 2( )gE t N . 

The second family is valid in the case of nonzero ex-

ternal magnetic field, in the following regime of the 

parameter-space: 
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The solution in this case becomes: 
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On this line we managed to transform the Hamilto-

nian into the form 
 

 † †

, , , ,

1

 ( )
N

i i i i U

i

H A A B B H KN , (6) 

 

where the terms Ai,σ and Bi,σ are block operators 

which represent a linear combination of fermionic opera-

tors defined on a finite domain of the system, see Fig. 3. 

One can easily see that the terms in the bracket are pos-

itive semidefinite. On the other hand, the Hubbard-term 

is positive semidefinite as well, and provides its smallest 

possible zero eigenvalue if there are no doubly occupied 

sites in the system. Furthermore, C KN , where N is 

the operator of the total number of particles in the sys-

tem, which is a constant of motion. 



 
E. KOVÁCS, ZS. GULÁCSI J. NANO- ELECTRON. PHYS. 4, 01004 (2012) 

 

 

01004-4 

4. THE OBTAINED GROUND STATES 
 

4.1 The expression of the ground states 
 

We obtained the GS wave vector in the form 
 

 †

,| |0
ig ii

G ,   

 

where |0  is the vacuum state. We consider the †
, iiG  

operators as the most general linear combination of 

creation operators acting on each lattice site of the sys-

tem. Furthermore, because of the positive semidefinite 

Hubbard term, we take into consideration that the low-

est energy value must be provided by a state without 

doubly occupied sites. We found the following two fami-

lies of †
, iiG  operators at  = 0, denoted hereafter by †D  

and †E :  

 

1 3 2

† † † † †3
, , , , ,i a i r i a i a r i a r

tt t
D c c c c

t t

 
1 2

† † †

, , ,i i r i r
E c c   

 

where 3 2 t . The GS energy of this wave-

function is 2( )gE t N . This solution is valid in 

phase diagram region described by (2). 
 

 
 

Fig. 4 – Illustration of the ground state wave functions. The 

sites i + r1, i + a, i + a + r2, i + a + r3 which are present in Di+a, 

are denoted with purple, while sites i + r1 and i + r2 present in 

Ei an denoted by green. 
 

For  =  we obtained a similar expression for the GS 

wave function, however, the coefficients of the creation 

operators in D and E is slightly different: 
 

1 3 2

† † † † †3
, , , , ,i a i r i a i a r i a r

tt t
D i c c c i c

t t

 
1 2

† † †

, , ,i i r i rE c c   

 

where 3 2 t . The GS energy is 2gE t N . 

The phase diagram region is the one determined by 

equations (4). We emphasize that this region is disjoint 

from the (2) region. 

 

4.2 The magnetic properties of the GS 
 

Now we have two sets of operators, namely †

, iiD  

and †

, iiE  which can appear in the GS vectors, each with 

NC terms for both up and down spins. Every vector 

from the kernel of the transformed Hamiltonian can be 

written as a product of these operators. The number of 

the operators in the product specifies the number of 

electrons in the system. The most general GS vector is 

obtained as a linear combination of these vectors. As 
†

, iiD  and †

, iiE  have no common lattice-points for differ-

ent i (except for †

, iiD  and †

, iiE ), the spin indices i of 

them for different cells are usually independent. For 

the same cell, the †

, iiD  and †

, iiE  operators must have 

the same spin index in order to avoid the double occu-

pancy. Physically this means that the solution is glob-

ally a non-magnetic (paramagnetic) phase up to the 

electron number N < 2NC – 1. For the case when in the 

same cell both operators D and E are present, the cell 

itself is ferromagnetic and behaves as a ferromagnetic 

cluster. However, different cells are magnetically not 

correlated. This is the reason why the system globally 

is non-magnetic if N < 2NC – 1. At N  2NC – 1or 

N  2NC all the D and E operators touch each other, the 

connectivity condition is satisfied and the system be-

comes ferromagnetic. 
 

4.3 The electric properties of the GS 
 

The long range hopping ground state expectation 

value (to the y direction, horizontal in Fig. 1.) can be 

defined as  
 

 1 1

†

1 , 1 ,| . . |
( )

|

g r ra r g

g g

c c H c
r . (7) 

 

We calculated Γ as a function of r (the distance of 

the hopping of the electron), more precisely the loga-

rithm of the absolute value of this function: ln ( )r , for 

the   0 GS wave function by a computer program 

written by us (see Fig. 5). We considered the maximum 

number of electron, N  2NC, which can be constructed 

as the product of NC †

, iiD  operators and NC †

, iiE  opera-

tors. We obtained that the ln|Г(r)| function is close to  

 

 
 

Fig. 5 – Logarithm of the absolute value of the Г(r) func-

tion (see (5)), for   0. The variable r/a is plotted along the 

horizontal axis, where a is the absolute value of the Bravais 
vector, while ln|Г(r)| is plotted along the vertical axis. The 

upper thin blue line is for t /t  0.4 while the lower thick 

green line is for t /t  0.8 
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a straight curve, which means that the long range hop-

ping ground state expectation value is exponentially 

decreasing. We can express it as 
 

/( ) rr Ae , 
 

where A is a constant and  is the one particle local-

ization length. This  is strongly depend on Hamiltoni-

an parameter t /t, for example if t /t  0.4, then 

 ≈ 1.57a, while if t /t  0.8 then  ≈ 0.84a, where a is 

the absolute value of the Bravais vector. 

Thus we can conclude that the ground state elec-

trons are localized, although not exactly to one lattice 

site. Therefore the GS is an insulator, albeit not a band 

insulator. As this system is insulating because of the 

interaction between the electrons, thus it is a Mott in-

sulator [20]. Further investigation of the GS is in pro-

gress and will be published elsewhere [19]. 

 

5. SUMMARY 
 

An itinerant diamond chain with external link is 

analyzed in the presence of a perpendicular external 

magnetic field in the frame of a non-integrable Hub-

bard model. For this chain exact ground states are de-

duced by a method using positive semidefinite operator 

properties. The ground states turn out to be nonmag-

netic and ferromagnetic in character, the latter is local-

ized in the thermodynamic limit.  

The method we use has a large spectrum of applica-

bility which not depends on dimensionality or integra-

bility, working well even in conditions completely un-

familiar for the traditional view about exact solutions, 

as three dimensions [15], two dimensions [16] or tex-

tures as stripes in 2D [17], or disordered systems [18]. 

Extreme details regarding the application of the meth-

od for chain structures have been presented in [8]. The 

method transforms first the Hamiltonian (H) in a posi-

tive semidefinite form (H+) plus an additive constant 

(C) and after this step deduces the ground state | g  

by constructing the most general wave vector which 

provides the minimum possible energy (i. e. zero) for 

H+. If this becomes possible, one finds the ground state 

energy Eg  C and the ground state | g  in the pa-

rameter space region PS where the exact transfor-

mation from H to H+ has been done. This transfor-

mation is not unique, can be performed in several dif-

ferent ways leading to different regions of the parame-

ter space with separately existing ground states. One 

notes that the transformation in a positive semidefinite 

form of the Hamiltonian can always be done since the 

spectrum of a real system is always bounded from be-

low, hence the relation H  H+ + C, where H+ is positive 

semidefinite, always holds (but usually, it is not easy to 

find H+). In deducing H+ in the present case one applies 

block operators (see A+ and B+ in Sec. 3) which are lin-

ear combinations of creation operators acting on the 

sites of a block. The such constructed positive sem-

idefinite operator H+ must exactly reproduce H+ – C, 

and this obligatory matching provides the equations 

from where the unknown numerical coefficients of the 

block operators can be deduced, and also the parameter 

space domain PS arises. One notes however that the 

use of linear combination of creation operators in build-

ing up the block operators is not obligatory, and also 

other type of expressions can be used, as bilinear com-

binations for example [4, 19].  

After obtaining H+ containing the 
 

 
, , , ,

†

,

†

i i i i iP A A B B  

 

expressions, in the present case the deduction of the 

ground state in the first step, reduces to the job to find 

the most general G+ operator which anticommutes with 

all block operators (here A+, B+) for all possible value of 

all indices. This is necessary since in this case the A and 

B operators of H' can be pushed in front of the G+ opera-

tors from | g , and because of  |0 |0 0A B , where 

|0  is the bare vacuum, the ground state can be de-

duced. 

In this way one finds the kernel of ,ii
P  

 H – C, from where, paying attention to the possible 

presence of the double occupancy, the kernel of the 

whole Hamiltonian can be obtained. This procedure of 

deducing the ground state works well for the concentra-

tion region described in Section 4, where the deduced 

solutions exist. For other concentration regions, often 

other procedures are suitable, see for example [1, 19]. 

In the presented paper, using the above described 

method in the case of the chain structures, our aim was 

to analyze the action of external links or side groups in 

the development of different ground states. We used 

here for this purpose external links which do not con-

nect different cells of the chain. Comparing our deduc-

tions to known results relating the diamond Hubbard 

chain without external links [1], one finds that in the 

present case, the external links mainly shift different 

phases in the parameter space of the model. We note 

that more drastic effects can be obtained in the case of 

external links which connect different cells of the 

chain. The study of this last case is at the moment in 

development, and will be published elsewhere [19]. 
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