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Abstract – On the basis of the deformed series in quantum calculus, we generalize the
partition function and the mass exponent of a multifractal, as well as the average of a random
variable distributed over a self-similar set. For the partition function, such expansion is shown
to be determined by binomial-type combinations of the Tsallis entropies related to manifold
deformations, while the mass exponent expansion generalizes the known relation τq =Dq(q− 1).
We find the equation for the set of averages related to ordinary, escort, and generalized probabilities
in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set,
exchange currency series, and porous-surface condensates are considered as examples.

Copyright c© EPLA, 2010

Introduction. – Fractal conception [1] has become a
widespread idea in contemporary science (see refs. [2–4]
for a review). Self-similarity is known to be a charac-
teristic feature of fractal sets: if one takes a part of the
whole set, it looks like the original set after appropriate
scaling. The formal basis of self-similarity is the power
law function F ∼ ℓh with the Hurst exponent h (for time
series, the value F is reduced to the fluctuation ampli-
tude and ℓ is the interval size within which this amplitude
is determined). While the simple case of monofractal is
characterized by a single exponent h, a multifractal system
is described by a continuous spectrum of exponents, the
singularity spectrum h(q) with argument q being the expo-
nent deforming the measures of the elementary boxes that
cover the fractal set [5]. On the other hand, the parame-
ter q represents a self-similarity degree of a homogeneous
function being intrinsic in self-similar systems [6] (in this
way, within non-extensive thermostatistics, this exponent
expresses the escort probability Pi ∝ p

q
i in terms of the

original one pi [7,8]). In physical applications, a key role
is played by the partition function Zq ∼ ℓ

τ(q) with ℓ as
the characteristic size of the boxes covering the multifrac-
tal and the exponent τ(q) connected with the generalized
Hurst exponent h(q) by the relation τ(q) = qh(q)− 1.
As fractals are scale-invariant sets, it is natural to apply

the quantum calculus to describe multifractals. Indeed,

(a)E-mail: alex@ufn.ru

quantum analysis is based on the Jackson derivative

Dλx =
λx∂x − 1

(λ− 1)x
, ∂x ≡

∂

∂x
(1)

that yields the variation of a function f(x) with respect to
the scaling deformation λ of its argument [9,10]. First, this
idea has been realized in the work [6] where the support
space of the multifractal has been proposed to deform by
means of the action of the Jackson derivative (1) on the
variable x reduced to the size ℓ of the covering boxes. In
this letter, we use a quite different approach wherein defor-
mation is applied to the multifractal parameter q itself to
vary it by means of the finite dilatation (λ− 1)q instead of
the infinitesimal shift dq. We demonstrate below that the
related description allows one to generalize the definitions
of the partition function, the mass exponent, and the
averages of random variables on the basis of the deformed
expansion in power series over the difference q− 1.
We apply the proposed formalism to the consideration
of multifractals in mathematical physics (the Cantor
binomial set), econophysics (exchange currency series),
and solid-state physics (porous-surface condensates).

Formulation of the problem. – Following the stan-
dard scheme [3,5], we consider a multifractal set covered
by the elementary boxes i= 1, 2, . . . ,W with W →∞. Its
properties are known to be determined by the partition
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function

Zq =

W
∑

i=1

pqi , (2)

that takes the value Zq = 1 at q= 1, in accordance with
the normalization condition. Since pi � 1 for all boxes i,
the function (2) decreases monotonically from maximum
magnitude Zq =W related to q= 0 to extreme values
Zq ≃ p

q
ext which are determined in the |q| →∞ limit by

the maximum probability pmax on the positive half-axis
q > 0 and by the minimum magnitude pmin on the negative
one. In the simplest case of the uniform distribution pi =
1/W , fixed by the statistical weight W ≫ 1, one has the
exponential decay Zq =W

1−q.
The cornerstone of our approach is a generalization

of the partition function (2) by means of introducing
a deformation parameter λ which defines, together with
the self-similarity degree q, a modified partition function
Zλq reduced to the standard form Zq at λ= 1. To find

the explicit form of the function Zλq , we expand the

difference Zλq −Zλ into the deformed series in powers of
the difference q− 1:

Zλq :=Zλ−
∞
∑

n=1

S
(n)
λ

[n]λ!
(q− 1)

(n)
λ , Zλ =

W
∑

i=1

pλi . (3)

For arbitrary x and a, the deformed binomial [9,10]

(x+ a)
(n)
λ = (x+ a)(x+λa) . . . (x+λn−1a)

=

n
∑

m=0

[ n

m

]

λ
λ
m(m−1)

2 xman−m, n� 1 (4)

is determined by the coefficients
[

n
m

]

λ
= [n]λ!
[m]λ![n−m]λ!

,

where generalized factorials [n]λ! = [1]λ[2]λ . . . [n]λ are
given by the basic deformed numbers

[n]λ =
λn− 1

λ− 1
. (5)

The coefficients of the expansion (3)

S
(n)
λ =−

(

qDλq
)n
Zq
∣

∣

q=1
, n� 1 (6)

are defined by the n-fold action of the Jackson
derivative (1) on the original partition function (2).

Generalized entropies. – Simple calculations give
the explicit expression

S
(n)
λ =−

[Zλ− 1]
(n)

(λ− 1)n
, n� 1. (7)

Hereafter, we use the functional binomial

[xt+ a]
(n)
:=

n
∑

m=0

(

n

m

)

xtma
n−m, (8)

defined with the standard binomial coefficients
(

n
m

)

= n!
m!(n−m)! for an arbitrary function xt = x(t) and a

constant a. The definition (8) is obviously reduced to
the Newton binomial for the trivial function xt = t. The
most crucial difference of the functional binomial from
the ordinary one is displayed at a=−1 in the limit t→ 0,
when all terms of the sum (8), apart from the first,
xt0 = x1, are proportional to xtm→ x0 to give

lim
t→0
[xt− 1]

(n)
= (−1)n(x1−x0). (9)

At t= 1, one has [x1− 1]
(n) = 0.

It is easy to see that the set of coefficients (7) is
expressed in terms of the Tsallis entropy [7]

Sλ =−
∑

i

lnλ(pi)p
λ
i =−

Zλ− 1

λ− 1
, (10)

where the generalized logarithm lnλ(x) =
x1−λ−1
1−λ is used.

As the λ deformation grows, this entropy decreases
monotonically taking the Boltzmann-Gibbs form
S1 =−

∑

i pi ln(pi) at λ= 1. The obvious equality

S
(n)
λ =−

[(1−λ)Sλ]
(n)

(λ− 1)n
, n� 1 (11)

expresses in explicit form the entropy coefficients (7) in
terms of the Tsallis entropy (10) that relates to manifold
deformations λm, 0�m� n. At λ= 0 when Z0 =W , the
limit (9) gives [S0]

(n) = [Z0− 1]
(n) = (−1)n−1(W − 1),

so that S
(n)
0 =W − 1≃W . Respectively, in the limit λ→ 1

where Sλ→ S1 and [(1−λ)Sλ]
(n)→ (1−λ)nSn1 , one

obtains the sign-changing values S
(n)
1 → (−1)n−1Sn1 .

Finally, the limit |λ| →∞ where Sλ ∼ λ
−1 and

[(1−λ)Sλ]
(n) ∼ (−1)n is characterized by the sign-

changing power asymptotics S
(n)
λ ∼ (−1)n−1λ−n.

For the uniform distribution when Zλ =W
1−λ, the

dependence (10) is characterized by the value S0 ≃W in
the limit λ≪ 1 and the asymptotics Sλ ∼ 1/λ at λ≫ 1
(in the point λ= 1, one obtains the Boltzmann entropy
S1 = ln(W )). As a result, with the λ growth along the
positive half-axis, the coefficients (7) decrease from the

magnitude S
(n)
0 ≃W to the sign-changing values S

(n)
1 =

(−1)n−1 [ln(W )]
n
and then tend to the asymptotics S

(n)
λ ∼

(−1)n−1λ−n ; with the |λ| growth along the negative half-
axis, the coefficients (7) vary non-monotonically tending

to S
(n)
λ ∼−|λ|−n at λ→−∞.

Generalized fractal dimensions. – Within a
pseudo-thermodynamic picture of multifractal sets [8],
effective values of the free energy τq, the internal energy α,
and the entropy f are defined as follows:

τq =
ln(Zq)

ln(ℓ)
, α=

∑

i Pi ln pi
ln(ℓ)

, f =

∑

i Pi lnPi
ln(ℓ)

. (12)

Here, ℓ≪ 1 stands for a scale, pi and Pi are original and
escort probabilities connected with the definition

Pi(q) =
pqi
∑

i p
q
i

=
pqi
Zq
. (13)
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Inserting the last equation into the second expression (12),
one obtains the Legendre transform τq = qαq − f(αq),
where q plays the role of the inverse temperature and
the internal energy is specified with the state equation
αq =

dτq
dq [3]. It is easy to convince oneself that the escort

probability (13) is generated by the mass exponent given
by the first definition (12) by taking eq. (2) into account:

qPi(q) = ln(ℓ)pi
∂τq
∂pi
=
∂ ln(Zq)

∂ ln(pi)
. (14)

Along the line of the generalization proposed, we intro-
duce further a deformed mass exponent τλq related to the

original one τq according to the condition τq = limλ→1τ
λ
q .

By analogy with eq. (3), we expand this function into the
deformed series

τλq :=

∞
∑

n=1

D
(n)
λ

[n]λ!
(q− 1)

(n)
λ , (15)

which is a generalization of the known relation τq =
Dq(q− 1) connecting the mass exponent τq with the multi-
fractal dimension spectrum Dq [3]. Similarly to eqs. (6),

(7), the coefficients D
(n)
λ are expressed in the form

D
(n)
λ =

(

qDλq
)n
τq
∣

∣

q=1
=
[τλ− 1]

(n)

(λ− 1)n
, n� 1, (16)

where the use of the definition (8) implies that the
term with m= 0 should be suppressed because τλ0 = 0.
At n= 1, the last equation (16) is obviously reduced to

the ordinary form D
(1)
λ = τλ/(λ− 1), while the coefficients

D
(n)
λ with n> 1 include terms proportional to τλm to
be related to the manifold deformations λm, 1<m� n.
To this end, the definition (16) yields a hierarchy of
the multifractal dimension spectra related to multiplying
deformations of different powers n.
Making use of the limit (9), where the role of the func-

tion xt is played by the mass exponent τλ with τ0 =−1
and τ1 = 0, gives the value [τ0− 1]

(n) = (−1)n at the point

λ= 0, where the coefficients (16) take the value D
(n)
0 = 1

related to the dimension of the support segment. In the
limits λ→±∞, the behavior of the mass exponent τλ ≃
Dextλ is determined by extreme values, Dext, of the
multifractal dimensions which are reduced to the mini-
mum value Dmin =D

(n)
∞ and the maximum one Dmax =

D
(n)
−∞
[3]. On the other hand, in the limits λ→±∞, the

extreme values Zλ ≃ p
λ
ext of the partition function (2)

are determined by the related probabilities pext. As a
result, the first definition (12) gives the mass exponents

τλ ≃ λ
ln(pext)
ln(ℓ) and the coefficients (16) tend to the mini-

mum value D
(n)
∞ ≃

ln(pmax)
ln(ℓ) at λ→∞ and to the maximum

one D
(n)
−∞
≃ ln(pmin)ln(ℓ) at λ→−∞.

For the uniform distribution whose partition function
is Zλ =W

1−λ, the expression Zλ := ℓ
τλ gives the fractal

dimension D= ln(W )
ln(1/ℓ) which tends to D= 1 when the size

of the covering boxes ℓ tends to the inverse statistical

weight 1/W . Being unique, this dimension relates to
a monofractal with the mass exponent τλ =D(λ− 1)
whose insertion into the definition (16) yields the equal

coefficients D
(n)
λ =D for all orders n� 1.

Relations between generalized entropies and

fractal dimensions. – Since either of the deformed
series (3) and (15) describes a multifractal completely,
their coefficients should be connected in some way. It is
easy to find an explicit relation between the first of these

coefficients Sλ = lnλ
(

Z
1
1−λ
λ

)

and Dλ =
ln(Zλ)

(λ−1) ln(ℓ) , being

the Tsallis entropy Sλ = S
(1)
λ and the multifractal dimen-

sion Dλ =D
(1)
λ . The use of the relation Zλ = ℓ

τλ , the
connection τλ =Dλ(λ− 1), and the Tsallis exponential

expλ(x) = [1+ (1−λ)x]
1
1−λ yields the expressions

Sλ = lnλ(W
Dλ), Dλ =

ln [expλ (Sλ)]

ln(W )
, (17)

where the statistical weight W = 1/ℓ is used. Unfortu-
nately, it is impossible to set any closed relation between
the coefficients (7) and (16) at n> 1. However, the use of
the partition function Zλ =W

−Dλ(λ−1) allows us to write

D
(n)
λ =

[Dλ(λ− 1)− 1]
(n)

(λ− 1)n
, (18)

S
(n)
λ =−

[

W−Dλ(λ−1)− 1
](n)

(λ− 1)n
. (19)

Thus, knowing the first coefficients of expansions (3) and
(15) connected with the relations (17), one can obtain
them for arbitrary orders n> 1.

Random variable distributed over a multifractal

set. – Let us consider an observable φi distributed over
a multifractal set with the average 〈φ〉

λ
q =
∑

i φiPi(q, λ).
The related probability is determined by the equation

λPi(q, λ) := pi+ ln(ℓ)pi
∂τλq
∂pi
, (20)

that generalizes eq. (14) for the escort probability due to
the λ deformation. Taking into account eqs. (14)–(16), this
average can be expressed in terms of the deformed series

λ 〈φ〉
λ
q = 〈φ〉+

∞
∑

n=1

[λ 〈φ〉λ− 1]
(n)

[n]λ!(λ− 1)n
(q− 1)

(n)
λ , (21)

where 〈φ〉=
∑

i φipi and 〈φ〉λ =
∑

i φiPi(λ). This equation
allows one to find the mean value 〈φ〉λq vs. the self-
similarity degree q at fixed λ deformation. In the case

λ= q when definition (4) gives (q− 1)
(n)
q = 0 for n> 1,

eq. (21) yields the connection 〈φ〉qq = 〈φ〉q between the
mean values related to the generalized and escort prob-
abilities given by eqs. (20) and (14), respectively. At
the point λ= 0, where, according to eqs. (4), (5), (9)

(q− 1)
(n)
0 = (q− 1)q

n−1, [n]0! = 1 and [λ〈φ〉λ− 1]
(n)→

(−1)n〈φ〉, eq. (21) is reduced to an identity; here, one
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Fig. 1: Fractal dimension coefficients (18) vs. deformation of
the Cantor binomial set at p= 0.2 (a) and n= 2 (b) (curves
1–4 correspond to n= 1, 2, 3, 4 on the upper panel and p=
0.1, 0.2, 0.3, 0.4 on the lower one).

has the uniform distribution Pi(q, 0) = 1/W for an
arbitrary pi and the average is 〈φ〉

0
q =W

−1
∑

i φi. At

λ= 1, when [〈φ〉1− 1]
(n) = 0, eq. (21) yields the ordinary

average 〈φ〉=
∑

i φipi because the distribution Pi(q, 1)
is reduced to pi. Setting

∑

∞

n=1(−1)
n−1〈φ〉λn→〈φ〉∞

for λ≫ 1, where (q− 1)
(n)
λ ∼ (−1)

n−1(q− 1)λn(n−1)/2,
[n]λ!∼ λ

n(n−1)/2 and [λ〈φ〉λ− 1]
(n) ∼ λn〈φ〉λn , one

obtains the simple dependence λ〈φ〉λq = 〈φ〉+(q− 1)〈φ〉∞,
according to which the average 〈φ〉q = 〈φ〉

q
q tends to the

limit 〈φ〉∞ with the growth of q.

Examples. – To demonstrate the approach developed,
we consider initially the simplest example of the Cantor
binomial set [3]. It is generated by the N -fold division
of the unit segment into equal parts with elementary
lengths ℓ= (1/2)N , then each of these is associated with
the binomially distributed products pm(1− p)N−m, m=
0, 1, . . . , N of probabilities p and 1− p. In such a case,
the partition function (2) takes the form Zq = [p

q +(1−
p)q]N to be equal to Zq = ℓ

τq with the mass exponent

τq =
ln[pq+(1−p)q ]
ln(1/2) [3]. Related dependences of the frac-

tal dimension coefficients (18) on the deformation para-
meter are depicted in fig. 1 for different orders n and
probabilities p. As the upper panel shows, at the given p

the monotonic decay of the fractal dimension D
(n)
λ , being

65432101-2-

0

1

2

3

4

5

1 2 3 4

a
N

S
)1(

52,100,157,005,052,000,052,0-

002-

051-

001-

05-

0

05

001

051

bN

S
(n)

4

3

2

1

Fig. 2: Effective entropies (19) of the Cantor binomial set at
p= 0.2 and: a) n= 1 (curves 1–4 correspond to N = 1, 4, 8, 12);
b) N = 10 (curves 1–4 correspond to n= 1, 2, 3, 4).

usual at n= 1, transforms into the non-monotonic depen-
dences, whose oscillations are the stronger the higher is
the order n. According to the lower panel, such behavior
is kept with variation of the probability p, whose growth
narrows the dimension spectrum. In contrast to the frac-
tal dimensions (18), the entropy coefficients (19) depend
on the effective number of particles N . This dependence is

demonstrated by means of the Tsallis entropy Sλ = S
(1)
λ

depicted in fig. 2a: with the deformation growth, this
entropy decays the faster the higher is N (by this, the
specific value Sλ/N remains constant at λ= 1). Accord-
ing to fig. 2b, with increase of the order n, the monoton-

ically decaying dependence S
(1)
λ transforms into the non-

monotonic one, S
(n)
λ , whose oscillations grow with n.

Typically, for arbitrary values of n and p, the magni-

tude S
(n)
0 (being equal to 2N for the Cantor binomial set)

remains constant.
As a second example we consider the time series of

the currency exchange of euro to US dollar in the course
of the years 2007–2009 which include the financial crisis
(data are taken from the website www.fxeuroclub.ru). To
ascertain the crisis effect, we study the time series inter-
vals before (January, 2007–May, 2008) and after (June,
2008–October, 2009) the crisis1. Moreover, we restrict

1The point of the crisis is fixed at the condition of maximal value

of the time series dispersion.
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Fig. 3: a) Fractal dimension coefficients (18) at n= 1 for the
time series of the currency exchange of euro to US dollar;
related entropy coefficients (19) at n= 1 (b) and n= 2 (c)
(bullets correspond to the time interval before the financial
crisis, circles to that after the crisis).

ourselves to considering the coefficients (18) and (19) of
the lowest orders n which make it possible to visualize
the difference between the fractal characteristics of the
time series intervals pointed out. Along this way, we base
on the method of the multifractal detrended fluctuation
analysis [11] to find the mass exponent τ(q), whose use
yields the dependences depicted in fig. 3. Comparison of
the data taken before and after the financial crisis shows
that it affects already the fractal dimension coefficient of
the lowest order n= 1, but has no effect on the Tsal-
lis entropy related to n= 1, while the entropy coefficient

a b

c d

0.015.70.55.20.05.2-0.5-5.7-0.01-

8.1

0.2

2.2

4.2

6.2

8.2

0.3

2.3

4.3

6.3

D
)1(

λ

2

λ

1

0186420

0.0

5.0

0.1

5.1

0.2

5.2

0.3

5.3

S
)1(

λ

2

1

λ

Fig. 4: Scanning electron microscopy images of ex situ grown
carbon (a) and titanium (b) condensates; corresponding fractal
dimensions (c) and entropies (d) at n= 1 (curves 1, 2 relate to
carbon and titanium, respectively).

of the second order n= 2 is found to be strongly sensible
to the crisis. Thus, this example demonstrates visually
that the generalized multifractal characteristics elaborated
on the basis of the developed formalism allow one to study
the subtle details of self-similarly evolving processes.
The last example is concerned with the macrostructure

of condensates which have been obtained as a result
of sputtering of substances in accumulative ion-plasma
devices [12]. The peculiarity of such a process is that
its use has allowed to obtain porous condensates of the
type shown in figs. 4a and b for carbon and titanium,
respectively. These condensates are seen to have apparent
fractal macrostructure, whose handling gives the fractal
dimension spectra and the entropies depicted in figs. 4c
and d, respectively. Comparing these dependences, we
can convince the reader that the difference between the
carbon condensate, which has a strongly rugged surface,
and the titanium one, becomes apparent already by using
the fractal dimension and entropy coefficients (18), (19)
related to the lowest order n= 1. Thus, in the case of
multifractal objects with strongly different structures the
use of the usual multifractal characteristics appears to be
sufficient.

Conclusion. – Generalizing the multifractal theory [5],
we have represented the partition function (3), the mass
exponent (15), and the average 〈φ〉λq of the self-similarly
distributed random variable as deformed series in powers
of the difference q− 1. Coefficients of these expansions are
shown to be determined by the functional binomial (8)
that expresses both multifractal dimension spectra (18)
and generalized Tsallis entropies (19) related to manifold
deformations. We have found eq. (21) for the average
related to the generalized probability (20) subject to the
deformation. Recently, making use of above formalism
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has allowed us to develop a field theory for self-similar
statistical systems [13].
As examples of multifractal sets in mathematical

physics, objects of solid-state physics, and processes in
econophysics, we have applied the formalism developed
to the analysis of Cantor manifolds, porous-surface
condensates, and exchange currency series, respectively.
The study of the Cantor set has shown that both fractal
dimension coefficients (18) and entropies (19) coincide
with the usual multifractal characteristics in the lowest
order n= 1, but display a very complicated behaviour
at n> 1. On the contrary, the consideration of both
carbon and titanium surface condensates has shown that
their macrostructures can be characterized by the use
of the usual fractal dimension and entropy coefficients
related to the order n= 1. A much more complicated
situation takes place in the case of the time series type
of currency exchange series. Here, a difference between
the various series is displayed for the fractal dimension
coefficients already in the lowest order n= 1, but the
entropy coefficients coincide at n= 1 and become different
at n= 2. This example demonstrates the need to use the
generalized multifractal characteristics obtained within
the framework of the formalism developed.

∗ ∗ ∗

We are grateful to the anonymous referee for construc-
tive criticism and to Dr V. I. Perekrestov for scanning
the electron microscopy images shown in figs. 4a and b.
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