Mechanisms of Fractal Formation in Colloidal Carbon-Bearing Natural System

A.P. Kuzmenko¹, V.V. Chakov², Chan Nyein Aung³, M.B. Dobromyslov³

¹ Southwest State University, 94, 50 Let Oktyabrya Str., 305040 Kursk, Russia
² Institute of Water and Ecological Problems, FEB RAN, 65, Kim-Yu-Chen Str., 680063 Khabarovsk, Russia
³ Pacific National University, 136, Tikhookeanskaya Str., 680035 Khabarovsk, Russia

(Received 24 November 2013; published online 10 December 2013)

By using the advanced nano-processes and phenomena in self-organizing colloidal systems are studied. The conditions of appearance of self-organized phenomena are determined and also ranges of operation of diffusion, capillary, and fractalization mechanisms are found.

Keywords: Self-organization, Colloidal system, Fractal and nano-sized structures, Capillary and diffusion phenomena.

PACS numbers: 05.65. + b, 61.43. Hv

1. INTRODUCTION

An increasingly growing interest in the capability of nano-sized entities to self-organization and designing, on this basis, practically important devices is well understood and, for the most part, dictated by successes in nanoelectronics [1]. To implement the processes of self-assemble at nano-level requires finding effective driving parameters that must be, obviously, associated with the size and structure of micro- and nanoparticles in space-organized systems [2, 3] including external gradient fields [4, 5].

2. EXPERIMENTAL RESULTS AND DISCUSSIONS

The object of the paper was to study sizes, chemical structure, and elemental distribution of self-organized entities in micro- and nanosystem region formed from colloidal carbon-bearing specimen, features and regularities of the formation on solid-phase surfaces.

Samples from natural doped carbon-leaf have a set of properties (the capability to microphase stratification, the existence of heterogeneous and heterogeneous micro- and nano-structure and others) that add to the study of mechanisms of fractal formation on nano-scale level. The samples were prepared in conditions limited in diffusion (the drop deposition method) at which: $E_b > E_{inter} \geq E_{kin} > E_d$, that is the bonding energy of particles with a substrate (E_b) was greater than the intermolecular interaction energy (E_{inter}), kinetic (E_{kin}), and also the energy of their diffusion (E_d). This condition is supported by the estimation of values of relevant energies with consideration for given in Fig. 1a their confocal microscopic (CM) (Omega Scope, AIST-NT) images at magnifications of 505° to 2830° shows microstructure formation at the drop’s edge after drying. Fig. 1b gives electron-microscopic (SEM) image of structures within the central region, Fig. 1c – atomic force (Smart SPM AIST-NT) microscopic (AFM) image of structures in the intermediate region, namely, between the edge and the center.

Fig. 1 – Images of structural formations: a – KM at the edge at 2830°; b – SEM in the central part at 7000°; c – AFM image of the part of the fractal

The distribution of chemical elements in regions given in Fig. 1a-c obtained with scan electron microscope (SEM) with energy dispersive adapter (EDA)
(JEOLJSM6610LV, EDX Oxford Instruments) is shown in Fig. 2. From all metals found by EDA technique: Na, Si, Cu, K, Ca, Fe, Zn, Mn in fractal branches (Fig. 1c) Al (27%) had the maximum content. Whereas its content in fractal center was 9-fold lower, and at the drop's edge was lower than 1%. Among all found metals Al had the maximum content. Also, aluminosilicate phases in organic carbon formations were found to be present in dominant contents. According to X-ray phase analysis (XRD) data (GBC EMMA, CuKα) a clear-cut line 3.32 Å corresponding to Al₂O₃ × 2SiO₂ × 2H₂O appeared. All other metals listed were found to be equal in content in all regions studied and was not greater than 1%. According to XRD data identified were the compounds of the type: MgSO₄, CaSO₄ × nH₂O, SiO₂ × nH₂O, CaO × SiO₂ × H₂O, CaO × Fe₂O₃ × 6H₂O and other hydrates and oxides. Carbon was dominated in all sample’s regions, which, in essence, is responsible for all physico-chemical properties of studied peats.

The photoactivation of peat colloidal system conducted with diluted to 3% H₂O₂ made it possible to obtain more contrast images of fractal branches both in FM and RS. Further concentration increase led to the decomposition of metal-bearing mineral inclusions and made FM image poorer. The increase in intensity of RS and FM at external parts of branches was possibly due to carrying out into these regions of larger nanoparticles after processing with H₂O₂. Comparison of elemental distribution data (Fig. 2) with RS and FM mapped images suggests that nano-particles of metal oxides (Al₂O₃ and oxides of other transitional metals in dramatically lower contents) may be accumulated at external parts of fractal branches. The enhancement of FM contrast may be due to interband transitions at radiative recombination of excited electrons in d band. This is also attested by the absence a reasonable structural contrast at excitation of λ = 352 nm and its complete absence at λ = 785 nm, corresponding to lower quantum excitation energy. Seen in Fig. 3a, b abrupt change in contrast of FM and RS images (from black to the most bright by the basis of fractal) indicates dramatically greater sizes of nanoparticles in this region. Correlation of RS and FM images with elemental distribution in various parts of fractal formations is inversely dependent on atomic mass: ~ 1/μ.

Forces acting when structuration of colloidal system from a drop takes place are the following: capillary, of diffusion, of internal friction, of interphase interaction and Van-der-Waals forces (the Lenard-Jones potential ~ 0.1 eV). Then the equation describing the drop surface may be written in the form: y = h₀ − kT − vt. Here h₀ is the maximum drop’s thickness, k = ta, α is the inclination angle of the wedge “air-liquid-substrate”, v is the velocity of the liquid free surface shift.
To consider diffusion and evaporation processes in this system as basic ones. To determine the dominant mechanism that brings about transition of colloidal particles to the drop’s edges with consideration for its surface equation \(y \) according to [2] calculate the dimensionless parameter: \(d = \frac{F DR}{(h_0)^2} \). To evaluate \(d \) consider that the diffusion component depends on the drop radius (transition of nano-particles from the center to edges \(R = 3 \) mm), the value of the angle \(\alpha \) at the drop edge measuring several degrees (\(k = \tan \alpha < 0.1 \) and the diffusion coefficient \(D \) was taken for water (\(2.4 \times 10^{-9} \) m\(^2\)/s) and water solution of a carbon compound (\(1.02 \times 10^{-9} \) m\(^2\)/s). Denominator is determined by evaporation whose value is dependent on the velocity of motion of the liquid edge to the center at evaporation: \(v = \frac{V}{t} \), where \(L \) is drop diameter, \(t \) is evaporation time, \(h_0 = 0.5 \) mm. In this case the value of \(d \) turns out to be significantly lower than 1, supporting the possible formation of structures at the drop edge due to the diffusion mechanism. Following the same procedure one can obtain and the conditions of structure formation in other regions: at the fractal – due to capillary, and at the fractal branches – fractalization mechanisms, when \(d = 1 \) \& \(d > 1 \), respectively.

The role of capillary mechanism can be evaluated by the value of the Bond number that is equal to the ratio of Rayleigh’s and Marangoni’s numbers: \(K_b = \frac{\rho g R h_0^2}{\sigma} \). Here \(g \) is gravitational acceleration, \(\rho \) is water density, \(\chi \) temperature conductivity, \(h_0 \) is the layer thickness and \(\sigma \) is surface tension of the medium. Let us consider water as the basic medium and take \(\rho \) and \(\chi \) for it. Take into consideration that fractals begin form at the last stage of evaporation, when the incoming energy is maximal and the colloidal system turns dramatically non-equilibrium.

Then \(h_0 \) becomes comparable with nano-particles sizes \(h_0 = d \approx 5 \div 70 \) nm, and the value of \(\sigma \) highly grows: \(\sigma = \frac{E}{S} \), since \(S = ml^2 \) for nano-particles decreases and surface energy increases. Under these conditions \(K_b \) becomes considerably lower than 1, corresponding dominant in this region capillary forces that are responsible for the fractal formation.

For the appearance of self-organization non-equilibrium is needed which in the present method (wedge-like dehydration) is afforded by only evaporation. Equation of motion of colloidal particles is determined in terms of the resultant of all forces: \(m \frac{dv}{dt} = \sum F_a \), whose solution must describe the distribution of particles. However, the existence of many parameters (viscosity, surface tension, etc.) that determine the forces hampers the solution of dynamical problem. To analyze the interaction in the studied mixed organic and inorganic system, following [1], consider potential energy that includes both physical and chemical sorption. The resulting dependence of interaction energy on the interparticle distance is characterized by two minima, namely, the first is due to covalent and ionic intra-atomic bonds, whereas the physical sorption occurs at interatomic distances greater than 0.3 nm. It is obviously that the boundary region (Fig. 1a) is formed due to chemical sorption, and the second minimum corresponds to the region of fractal formations (Fig. 1c) where nano-particles are structured having lesser size as shown earlier. The maximum of negative attraction energy corresponds to an unstable equilibrium state. Nonetheless, this may lead to an association of particles of various sizes, which is objectively observed (Fig. 1b). Comparison of observed confocal and AFM images given in Fig. 1a-c considering the following mechanisms: viscous – (Fig. 1a), capillary – (Fig. 1b), and fractalization – (Fig. 1c).

3. CONCLUSIONS

Thus, in nano-structural studies of natural colloidal systems the conditions of appearance of self-organized phenomena have been determined, and also ranges of operation of diffusion, capillary, and fractalization mechanisms have been found.

REFERENCES