Ж. нано- електрон. фіз./ J. Nano- Electron. Phys. 2010.– Т.2, №1. – С.60-68

PACS number: 64.75.Nx

МОДЕЛИРОВАНИЕ ПРОЦЕССА ОБРАЗОВАНИЯ И РАСПАДА ТВЕРДОГО РАСТВОРА В СИСТЕМЕ CeO₂ - La₂O₃

А.Е. Соловьева

Сумской государственный университет, ул. Римского-Корсакова, 2, 40007, Сумы, Украина

Проведено модулирования процессов образования и распада твёрдых растворов в системе $CeO_2 - La_2O_3$. Обнаружен фазовый переход $F \to F^1$ в системе $CeO_2 - La_2O_3$, связанный с процессом разупорядочения структуры диоксида церия с малыми добавками окиси лантана. Построены математические модели процесса образования твердого раствора на основе CeO_2 с добавками La_2O_3 , которые учитывают електронное строение вещества, и отклонения от стехиометрии $CeO_2 - x$.

Ключевые слова: ДИОКСИД ЦЕРИЯ, ОКСИД ЛАНТАНА, ТВЕРДЫЙ РАСТВОР, ФАЗОВЫЙ ПЕРЕХОД.

(Получено 02.10.2009, в отредактированной форме – 29.03.2010)

1. ВВЕДЕНИЕ

Материалы на основе CeO_2 с добавками La_2O_3 представляют практический интерес, как материалы, обладающие электропроводимостью. Так, например, твердые растворы CeO_2 - La_2O_3 могут использоваться в качестве твердых электролитов для топливных ячеек, защитные огнеупорные покрытия, носители катализаторов и др.

В структуре оксида церия существуют дефекты: анионные вакансии, которые являются элементами этой структуры; вакансии, которые образуются в процессе восстановления оксида; вакансии, которые образуются при растворении других оксидов.

Дефекты, которые являются элементами структуры, могут с атомами примеси объединяться и образовывать комплексы дефектов в виде доноракцепторных пар. Накопление таких дефектов приводит к изменению температур полиморфных превращений, изменению физических свойств, распаду твердых растворов [1, 2].

2. ПОСТАНОВКА ЗАДАЧИ

Термодинамический расчет твердых растворов на основе структуры флюорита с дефектами структуры является сложным процессом выбора правильных моделей образования твёрдого раствора, поскольку модель твердого раствора определяет запись термодинамического потенциала, тем самым и конечный результат. Расчет энергетических коэффициентов, определяющих изменение внутренней энергии кристалла, не может быть выполнен с достаточной точностью, и их целесообразно находить путем сравнения с экспериментом.

Целью данной работы является построение правильных моделей процесса образования твердых растворов в системе CeO₂ - La₂O₃.

Диоксид церия — CeO_2 является структурным аналогом ZrO_2 , HfO_2 , PrO_2 . Он имеет кубическую гранецентрированную упорядоченную структуру типа — F-флюорита.

Оксид церия Ce₂O₃ содержит 25% закономерно упорядоченных анионных вакансий, которые являются элементами структуры, имеет кубическую объёмно центрированную решетку типа пирохлора – *C*. Ce₂O₃ является структурным аналогом La₂O₃, Y₂O₃, Sc₂O₃, In₂O₃.

Структуры диоксида и оксида церия являются прекрасными природными моделями, на которых можно изучать процессы образования дефектов и изучать их влияние на фазовые превращения при термическом воздействии.

Моделирование процесса образования твердого раствора в системе на основе диоксида церия с добавками окиси лантана можно составить последовательно из следующих моделей: 1) модель электронного строения конфигурации электронов в атомах и ионах CeO_2 , La_2O_3 ; 2) математические модели процессов отклонения от стехиометрии оксида лантана и диоксида церия, сопровождаемые фазовыми превращениями структуры при высоких температурах в среде воздуха; 3) математическая модель образования и распада твердых растворов в системе $CeO_2 - La_2O_3$ в интервале температур $25 \div 1900$ °C в среде воздуха. Последовательно, рассматривая и просчитывая эти модели, можно прогнозировать образование других оксидных систем для получения материалов с заданными определенными свойствами.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1 Модель конфигурации внешних электронов в атомах и ионах CeO₂, La_2O_3

Конфигурации оксидов при образовании конденсированного вещества из изолированных атомов приводят к разделению валентных электронов этих атомов на локализованные и коллективизированные. Локализованная часть валентных электронов в твердом теле перераспределяется в спектр конфигураций, наиболее стабильными из которых являются свободные, наполовину заполненные и полностью заполненные конфигурации.

Окись лантана при комнатной температуре существует, как La(OH)₃. При прокаливании гидрата лантана в среде воздуха, он разлагается, что приводит к фазовым превращениям, которые сопровождаются объёмными изменениями структуры. При охлаждении до комнатной температуры происходит процесс гидратации.

В окиси церия наличие $Ce(OH)_3$ в структуре не существует. Церий может отдавать два электрона с образованием f° - конфигурации, что приводит к валентности Ce^{4+} и образованию CeO_2 в среде воздуха [3, 4]. По-видимому, такой подход рассмотрения модели соединения таких веществ и при определенных условиях их исследования, можно обнаружить эти аномалии концентраций электронов, рассчитать их и объяснить такие процессы, как проводимость ионов, так и проводимость электронов в этих веществах.

А.Е. СОЛОВЬЕВА

3.2 Математические модели процессов отклонения от стехиометрии в оксидах лантана и диоксида церия

Согласно данным [4] в образцах из $La(OH)_3$ при нагреве наблюдали разложение и появление ОЦК фазы типа – С окиси лантана. При дальнейшем нагреве эта фаза превращается в моноклинную модификацию типа – B, которая при 800 °C в среде воздуха и при 500 °C в вакууме превращается в гексагональную модификацию типа – A. Гексагональная структура окиси лантана существует в интервале температур 900 ÷ 1900 °C обладает склонностью к образованию текстуры.

Рис. 1 – Микроструктура образцов $A - La_2O_3$ (a) и $CeO_2 + 5$ мол. % La_2O_3 в (б) после спекания на атмосфере при 1750 °C

Микроструктура образцов оксида лантана приведена на рис. 1а.

В работах [5, 6] просчитывают процессы восстановления и фазовые превращения в диоксиде церия, связанные с изменениями концентрации дефектов, которые контролируют процесс фазовых превращений.

Образование анионных вакансий в структуре CeO₂ и рост их концентраций приводит к изменению параметра элементарной ячейки структуры в зависимости от температуры спекания образцов диоксида церия и осуществляется по следующей модели отклонения от стехиометрии

$$\operatorname{CeO}_2 \to \operatorname{Ce}_{1-x}^{4+} \operatorname{Ce}_x^{3+} \operatorname{O}_{2-0,5x} v(O)_{0,5x},$$
 (1)

где v(O) – анионные вакансии.

Параметр решётки фазы флюорита стехиометрического состава определяется соотношением

$$a_0 = \frac{4}{\sqrt{3}} \left(r_K + r_A \right) \,, \tag{2}$$

где r_k – ионный радиус катиона; r_A – ионный радиус кислорода.

Параметр решётки нестехиометрического состава диоксида церия определяется соотношением

$$a = \frac{4}{\sqrt{3}} \left[(1-x)r_{Ce^{4+}} + xr_{Ce^{3+}} + (1-x)r_{O^{2-}} + \frac{x}{4}r_{v(o)} \right], \tag{3}$$

62

где $r_v(O)$ – радиус анионной вакансии; x – концентрация анионных вакансий.

Разность величин (2) и (3) равна

$$a - a_0 = \frac{4}{\sqrt{3}} \left[x (r_{Ce^{3+}} - r_{Ce^{4+}}) + \frac{x}{4} (r_{\nu(O)} - r_{O^{2-}}) \right].$$
(4)

Соотношение (4) определяет изменения параметра решётки фазы типа *F* – оксида CeO_{2 – x.}

Изменение параметра решетки фазы типа F диоксида церия в процессе восстановления можно представить, как предел функции одной переменной $\Delta a = f(x)$; x = f(T); T – температура спекания.

Испарение кислорода из решётки диоксида церия начинается при 1500 °С. В решётке появляются анионные вакансии, меняется состав оксида CeO_{2-x} . Этот процесс можно объяснить, как предел изменения параметра решётки в зависимости от концентрации дефектов (в рамках одной структуры), в зависимости от температуры спекания образцов

$$\lim_{T \to 1500^{\circ} C} f(a_0) = \lim_{T \to 1500^{\circ} C} f(a_1) = (a_1 - a_0).$$
(5)

Этот разрыв функции можно считать условным, так как структура типа F сохраняется в широком интервале температур (1500 ÷ 1800 °C) в среде воздуха [5, 6], а изменение параметра очень малы и составляют в этом интервале температур (0,0001 ÷ 0,0005) нм.

Структура диоксида церия типа F энергетически выгодна только при наличии полностью упорядоченной катионной подрешётки. Поскольку распределение электронной плотности по катионам является приблизительно равномерным, то при некоторой степени отклонения от стехиометрии наступает разупорядочение катионной подрешётки (теряется эквивалентность катионных позиций), приводящее к переходу $F \to F^1$ – фазу. Аналогичная ситуация может происходить при введении других катионов в решётку диоксида церия и существенно снижать температуру этого фазового превращения.

Модели рассчитываются с помощью предела функции одной переменной при нахождении предельных концентраций дефектов, связанных с изменением температуры. Такой расчет позволяет изучить экстремальные точки разрыва функции, которые соответствуют критическим точкам фазовых превращений в диоксиде церия. Эти сведения дают возможность изучить модель образования твердых растворов на основе диоксида церия с добавками окиси лантана.

3.3 Математические модели процесса образования и распада твердых растворов в системе CeO₂ - La₂O₃

Составы образцов на основе CeO_2 с различными концентрационными добавками La_2O_3 (1 ÷ 70 мол.%), которую предварительно прокаливали при 1000 °C, и спекали образцы в интервале температур (1000 ÷ 1900 °C) с последующим охлаждением на воздухе. Образцы, содержащие твердый раствор не разрушались при хранении на воздухе. Образцы, содержащие твердый раствор и свободный оксид лантана, разрушались за счет гидратации окиси лантана. Микроструктура однофазного твердого раствора, приведена на рис. 16.

Зависимость параметра решётки твердого раствора, который образуется на основе F^1 с добавками La₂O₃ (ось абсцис – мол. % окиси лантана) показана на рис. 2. Рост температуры спекания до 1400 °C приводит к образованию однофазного твердого раствора типа флюорита на основе F^1 , при 1900 °C однофазная область твердого раствора достигает 60 мол. % La₂O₃. Эти, охлаждённые образцы не разрушаются на воздухе при комнатной температуре.

Рис. 2 – Образование твердого раствора в системе CeO_2 - La_2O_3

Согласно рентгеновским данным, получили линейную зависимость параметра решётки диоксида церия от добавок окиси лантана. По линейной зависимости параметра решётки можно утверждать, что в данной системе образуются твердые растворы типа замещения – вычитания.

Образование однофазного твердого раствора на основе диоксида церия с добавками окиси лантана протекает через фазовый переход $F \to F^1$, который наблюдается на образцах состава (CeO₂ + 1 ÷ 5 мол. % La₂O₃).

Появление фазы типа F^1 в смеси с фазой F наблюдали на образцах, спеченных при 1000 °C. Рост температуры спекания до 1400 °C приводит к образованию однофазного твердого раствора типа флюорита на основе F^1 .

Фазовый переход $F \to F^1$ изучали на двухфазных образцах после спекания при 1300 °С. Использовали образцы состава CeO₂ + (5 ÷ 15) мол. % La₂O₃. Такие образцы исследовали методом высокотемпературной рентгенографии в интервале температур (25 ÷ 1400 °С) в среде воздуха. При нагреве одновременно следили за изменением параметров решёток двух фаз. По мере нагрева, линии двух фаз смещаются равномерно в сторону малых углов до температуры 1300 °С и только с этой температуры начинают сближаться, одновременно происходит перераспределение интенсивности линий этих фаз. Происходит образование твердого раствора на основе F^1 структуры по сложному механизму.

Этот процесс можно представить, как фазовый переход второго рода. Он протекает постепенным превращением кубической упорядоченной структуры типа F в неупорядоченную кубическую структуру типа F^1 и эта структура сохраняется при охлаждении до комнатной температуре (рис. 3).

Рис. 4 – Рентгенограммы образцов состава CeO_2 + 5мол. % La_2O_3 после спекания на воздухе при: 1 – 1000 °C; 2 – 1300 °C; 3 – 1400 °C; 4 – после охлаждения при 25 °C

Аналогичные результаты были получены на закаленных образцах. Фазовое превращение $F \to F^1$ можно считать, как разрыв функции одной переменной второго рода, в зависимости от концентрации дефектов, которые возникают в структуре при восстановлении оксида, так и при растворении окиси лантана

$$\lim_{T \to 1400^{\circ}C} f(F) = \lim_{T \to 1400^{\circ}C} f(F^{1}) = a^{1},$$
(6)

где $a^1 = f(x, y)$; x – концентрация анионных вакансий; y – мол. % La₂O₃ в растворе.

$$F = f(a); F^1 = f(a^1).$$

Коэффициенты термического расширения двух фаз для всех составов до 1300 °С практически одинаковы и равны 11,50·10⁻⁶ °С⁻¹. Выше 1300 °С коэффициент термического расширения фазы F^1 уменьшается до значения 10⁻⁶ °С⁻¹.

Математическая модель твердого раствора на основе диоксида церия с добавками окиси лантана можно представить как раствор двух подрешёток

$$(1 - y)$$
CeO₂ + yLa₂O₃ \rightarrow CeO_{1 - y}La_yO_{2 -0.5y} v(O).

При отклонении от стехиометрии твердый раствор дополнительно содержит анионные вакансии и может быть представлен моделью

$$\operatorname{Ce}_{1-y}^{4+}\operatorname{La}_{y}^{3+}\operatorname{O}_{2-y}\nu(O) \to \operatorname{Ce}_{1-y-x}^{4+}\operatorname{La}_{y}^{3+}\operatorname{Ce}_{x}^{3+}\operatorname{O}_{2-0,5y-0,5x}\nu(O)_{0,5y-0,5x} + \frac{x}{4}\operatorname{O}_{2}\uparrow, \quad (7)$$

где *у* – мол. % добавки окиси лантана; *х* – дефекты по кислороду.

В данной системе образуются твердые растворы типа замещения – вычитания. При замещении трехвалентными катионами лантана катионов церия возникает одна вакансия на два замещенных катионов церия. Катионы лантана не могут внедряться в неструктурные позиции в силу большого различия между значениями ионных радиусов лантана и церия. Таким образом, в данной системе образуются растворы замещения – вычитания, что обеспечивает линейный характер зависимости a(x, y)(рис. 2).

Распад твердых растворов проводили на образцах с содержанием 1 ÷ 50 мол. % окиси лантана в интервале температур 1100 ÷ 1900 °С с выдержками 20 ÷ 80 ч. при температурах 1100, 1400, 1600 °С, а при 1900 °С 6 ч. на воздухе. Согласно этим данным распадаются твердые растворы, как с малыми добавками, так и с большими добавками. Образцы с добавками 10 мол % лантана в диоксиде церия распадаются на фазы F и F^1 типа флюорита при 1100 °С. Увеличение концентрации окиси лантана в

Рис. 4 – Микроструктура образца состава $CeO_2 + 5$ мол. % La_2O_3 , полученная после изотермического отжига при 1600 °С (80 час.) на атмосфере

растворе при этой температуре выпадает оксид лантана. Такие образцы быстро разрушались. При $1400 \div 1600$ °C на образцах с малыми добавками (1 ÷ 5 мол. % окиси лантана) наблюдали в смеси кубическую фазу типа *C* оксида церия и твердый раствор на основе диоксида церия типа *F* (рис. 4).

Фаза типа $C - \text{Ce}_2O_3$ выпадает по границам зерен твердого раствора на основе диоксида церия с добавками окиси лантана. Величина зерен C – фазы равна 6 мкм. Полученные результаты распада твердых растворов в данной системе приведены на рис. 5.

При 1600 °C сохраняется однофазный раствор для образцов с содержанием 10 ÷ 50 мол. % добавки окиси лантана в растворе. При 1900 °C образцы не распадаются, как с малыми концентрациями окиси лантана, так и с большими.

Рис. 5 – Схемы неравновесного распада твердых растворов типа флюорита в системе CeO₂ - La₂O₃. 1 – C + F фаза, 2 – F¹ фаза, 1 – F + F¹ фаза, 1 – F¹ + La₂O₃ фаза

4. ВЫВОДЫ

Установлено, что в данной системе образуется твердый раствор типа замещения — вычитания. Образование и распад твёрдых растворов в системе $CeO_2 - La_2O_3$ можно изучить с помощью 3 моделей. Каждая модель основана на сложных расчетах, учитывающих экспериментальные данные, что позволяет объяснить закономерности процесса образования и распада твердого раствора на основе CeO_2 . Приведенные математические модели процесса отклонения от стехиометрии диоксида церия, математические модели образования твердого раствора типа замещения вычитания на основе диоксида церия с добавками окиси лантана объясняют все структурные изменения в изучаемых образцах.

Обнаружено фазовое превращение $F \to F^1$, связанное с процессом разупорядочения структуры диоксида церия с добавками окиси лантана. Это фазовое превращение относится ко второму роду изменения структуры.

THE MODULATION OF PROCESS FORMATION AND DISSOCIATION SOLUTION IN SYSTEMS CeO₂ - La₂O₃

A.E. Soloviova

Sumy State University

2, Rimsky-Korsakov Str., 40007, Sumy, Ukraine

The process of creation and dissociation solid solution in systems $CeO_2 - La_2O_3$ modeling was investigated. $F \rightarrow F^1$ type phase transition in the system $CeO_2 - La_2O_3$, caused by disorder process of the cerium oxide structure with the small addition of lantana oxide. The mathematical model of the of the solid solution which based on CeO_2 with addition of La_2O_3 take into account the electron structure of matter and stoichiometry CeO_{2-x} deviation.

Keywords: CERIUM DIOXIDE, LANTANA OXIDE, SOLID SOLUTION, PHASE TRANSITION.

А.Е. СОЛОВЬЕВА

МОДЕЛЮВАННЯ ПРОЦЕСУ УТВОРЕННЯ ТА РОЗПАДУ ТВЕРДИХ РОЗЧИНІВ У СИСТЕМІ СеО₂ - La₂O₃.

О.О. Соловйова

Сумський державний університет, вул. Римського-Корсакова, 2, 40007, Суми, Україна

Проведено моделювання процесів утворення і розпаду твердих розчинів у системі $CeO_2 \cdot La_2O_3$. Виявлений фазовий перехід $F \to F^1$ у системі $CeO_2 \cdot La_2O_3$, що пов'язано з процесом розупорядкування структури діоксіда церія з незначною домішкою окису лантану. Побудованя математичні моделі процесу утворення твердого розчину на основі CeO_2 з домішками La_2O_3 , які враховують електронну будову речовини та відхилення від стехіометрії $CeO_2 - x$.

Ключові слова: ДИОКСИД ЦЕРИЮ, ОКСИД ЛАНТАНУ, ТВЕРДИЙ РОЗЧИН, ФАЗОВИЙ ПЕРЕХІД.

СПИСОК ЛИТЕРАТУРЫ

- 1. V.G. Bondar, V.P. Gavrilyuk, V.S. Konevskii, *Semiconductor physics. Quantum Electronics and Optoelectronics* 4 No2, 131 (2001).
- 2. В.Я. Шевченко, С.Б. Баринов, Техническая керамика (Москва: Наука: 1993).
- В.Б. Глушкова, М.В. Кравчинская, А.К. Кузнецов, П.А. Тихонов, Диоксид гафния и его соединения с оксидами редкоземельных элементов (Ленинград: Наука: 1984).
- 4. А.Е. Соловьёва, А.М. Гавриш, Е.И. Зоз, *ЖНХ* 19, 1446 (1974).
- 5. А.Е. Соловьева, ДАН України, № 1, 62 (2004).
- 6. А.Е. Соловьева, Вісник СНАУ, №12, 5 (2004).