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Melting and freezing of nanometer-size gold clusters were simulated using the isothermal molecular 

dynamics. The results obtained confirm the results of other authors demonstrating, at the same time, the 

best agreement with the results of direct (laboratory) experiments. 
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1. INTRODUTION 
 

Nanometer-size particles have being intensively 
studied in view of many possible applications in nano-

technology. We focus on gold (Au) nanoclusters which 

have provoked many investigations in both fundamen-
tal and applied directions. Possible applications of gold 

nanoclusters in electronics, catalysis and optics were 

reviewed in [1]. Besides, individual Au nanoparticles 

have ferromagnetic spins and their ensembles are de-
scribed by the superparamagnetic model [2] in spite of 

the diamagnetism of the bulk Au. Quite recently a new 

way of the silicon semiconductor nanocrystal growth 
involving just Au nanoclusters was also reported [3]. 

All the available experimental data [4-6] demon-

strate the reduction of the nanocluster melting temper-

ature mT  in comparison with the bulk value ( )
mT
  that 

agrees Thomson’s formula 
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where   is the specific (per atom or per unit mass) 

bulk value of the melting heat, s  is the specific  vol-

ume and sl  is the interfacial tension, i.e. the specific 

(per unit area) excess free energy of the solid-liquid 

boundary. 
Up to the present time, freezing of metallic nano-

particles, i.e. the inverse transition from a liquid-like 

cluster to the crystal-like one has been much less stud-

ied. So, the most of scientists have avoided using the 
term “crystallization” to nanoparticles. The term “freez-

ing” was also used by Lewis et al. [7] in their early but 

interesting work on MD simulation of melting and 
freezing of Au nanoparticles.  

In this work we are using our own computer program 

developed involving the tight-binding potential (TBP) 
which was proposed and justified taking into account 

some results of quantum mechanics [8]. Earlier [9] we 

used another computer program involving, however, the 

same many-body potential to investigate the size depend-
ence of the specific heat capacity of metallic nanoclusters. 

2. PREPARATION OF THE INITIAL CONFIGU-

RATION AND SIMULATION RESULTS 
 

The initial spherical, to some extent, configuration 
used to begin the melting and freezing simulation cy-
cles is carved out of the bulk face-centered cubic (fcc) 
Au crystal. After setting the initial cluster configura-
tion into the center of the simulation cell and its equili-
brating (relaxing) at a chosen low temperature, the 

cluster is gradually and uniformly heated and cooled, 
i.e. subjected to the chosen number of the melting and 
crystallization cycles in order to identify the melting 
and freezing transitions. It is clear enough that the 

lowest temperature minT  should be noticeably less than 

the macroscopic melting temperature ( )
mT
  and the 

highest maxT  noticeably higher than ( )
mT
 . At the same 

time, maxT should not be so high to provoke the thermal 

instability of the cluster. 
In our program Verlet’s MD algorithm of velocities 

and Berendsen’s thermostat  are used. A small (at na-
noscale distances) time run step 0.01 fs is chosen in 
order to provide the thermal relaxation under gradual 
increasing and decreasing the temperature. 
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Fig. 1 – Melting (line 1) and freezing (line 2) curves for Au 

nanocluster containing 1000 atoms 
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In Fig. 1 the dependences of the specific (per atom) 
potential part u of the cluster total, i.e. internal, by 
thermodynamic terminology, energy are presented cor-

responding to heating (curve 1) and cooling (curve 2) 
the particle. In what follows these curves will be  
referred to as the melting and freezing curves, respec-
tively. The noticeable upward jump in the potential 
energy u seen in Fig. 1 (curve 1) should be accompanied 
by the absorption of the heat. Respectively, the upward 
jump can be interpreted as the cluster melting and the 

temperature of about 950 K as the melting tempera-

ture. Upon cooling from maxT , the cluster undergoes 

the liquid-solid transition, i.e. to freezing which can be 
identified by the sharp downward jump in curve 2. As 

the freezing temperature f mT T , we observe the melt-

ing-freezing cycle, i.e. a hysteresis loop. 
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Fig. 2 – Size dependences of the melting Tm and freezing Tf 

temperatures obtained using results of our molecular dynam-

ics experiments 
 

The size dependences of mT  and fT  (Fig. 2) may be 

presented both as dependences of these quantities on N 
and on the particle diameter D or its radius R. To re-

calculate the ( )mT N  and ( )fT N  curves into the ( )mT D  

and ( )mT D  dependences, one should know the N(D) 

function. For this purpose the relationship 
3 / 6sN n D  may be used as a first approximation 

where 1
s sn   is the bulk value of the cluster density 

(in m-3). For Au nanoclusters formula 3
( ) 0.0342nmD N  

may be also used [10].  

In Fig. 3 the size dependence ( )mT N  obtained using 

the results of our MD experiments (curve 1) is com-

pared to MD results of other authors (curves 2 and 3) 
as well as with the available results of direct experi-
ments (curves 4, 5, and 6). In Fig. 4 the dependences of 

mT  on R – 1 are presented to compare the same experi-

mental and MD results with dotted lines 7 and 8  

obtained using Thomson’s formula (1). Experimental 

values of   and s are presented and referred by Cas-

tro et al. [5]. However, contrary to   and s  parame-

ters, experimental data on sl  are rather scanty and 

not quite reliable. So, our calculations using Thomson’s 

formula (1) were carried out for two noticeably differing 
values of the interfacial tension: 190 mJ/m2 [11] and 
270 mJ/m2 [11, 12]. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
500

600

700

800

900

1000

1100

6

4

N

 

T
m
, K

1

2

3

5

 

Fig. 3 – Comparison of size dependences of the Au 

nanocluster melting temperature obtained in available 

molecular dynamics and laboratory experiments. Solid line 1 

presents the results of our molecular dynamics experiments, 

lines 2 and 3 molecular dynamics results by Zhang Yan-Ning 

et al. [13] and Lewis et al. [7], respectively. Dashed lines 4, 5 

and 6 display experimental results by Buffat and Borel [4], 

Dick et al. [6] and Castro et al. [5], correspondingly 
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Fig. 4 – The dependence of Tm on R – 1. Line 1 presents our 

molecular dynamics result. Lines 2-6 correspond to the same 

references as in the caption to Fig. 5; the straight dotted line 7 

was obtained using Thomson’s formula (1) and the value 

sl  190 mJ/m2, straight dotted line 8 was calculated 

proposing that sl  270mJ/m2 

 

3. DISCUSSION  
 

Though, as was mentioned above, the relaxation of 

nanoclusters in the course of their heating and cooling 

was specially controlled, the existence of the hysteresis 

itself shows that current states of nanoclusters during 

their remelting and refreezing cycles can not be treated 

as quite equilibrium. In other words, we agree, in gen-

eral, with the opinion of Lewis et al. [7] that the melt-

ing and freezing hysteresis occurs as it is much easier 

for the cluster to go from an ordered, i.e. the crystalline 

state, to the disordered, i.e. to liquid state than the 
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opposite. Really, the cluster freezing has never given 

the initial configuration with the perfect fcc-structure. 

To investigate structural transformations in Au clus-

ters in the course of their heating and cooling we have 

also studied the probability p of different coordination 

polyhedra. A detailed analysis on this topic is beyond 

frames of this paper. Let us only note that for the ini-

tial relaxed configuration cubo-octahedra correspond-

ing to fcc local structure are typical with p  100 %. 

After melting any definite polyhedra can not be found 

around 65 % of atoms, and with low enough probabili-

ties cubo-octahedra (p  5 % as well as icosahedra 

(p  30 %) were observed. After refreezing, i.e. at 

minT T , cubo-octahedra (60 %), anti-cubo-octahedra 

(20 %) and icosahedra (5 %) can be built up. All the 

above polyhedra correspond to the close packed struc-

tures, i.e. to the first coordination number 1 12z  . 

However, as no coordination polyhedra could be con-

structed around 15 % of atoms, the average value 1z  of 

the first coordination number 1z is less than the maxi-

mal value (max)
1 12z  . 

The size dependence of the melting temperature 

obtained in our work and shown in Fig. 2 demon-

strates the best agreement with the results of two 

independent direct experiments in comparison with 

MD results of other authors also presented in this 

figure. Obviously, experimental results of Castro et al. 

[5] are underestimated though they used an interest-

ing method proposing that the melting temperature 

was fixed when the shape of Au nanoclusters on the 

solid surface suddenly changed. In our computer ex-

periments, not presented here, we also used an analo-

gous method and nanoparticles demonstrated some 

fluidity at temperatures mT T  proposing that 

mT had been prior found via the calorimetric method 

descried above. Early experimental data [4] based on 

the electron diffraction technic seem to be more relia-

ble from this point of view as well as resent enough 

experimental data [6] obtained using DTA, i.e. a calo-

rimetric method similar to that used in our computer 

experiments. Just the size dependence of the melting 

temperature obtained in [6] demonstrates the best 

agreement with our MD results. 

To prove whether the linear dependence of mT  on the 

reciprocal particle radius R – 1 is fulfilled, as Thomson’s 

formula (1) predicts, all the ( )mT N  dependences have 

been also recalculated and shown in Fig. 3 as functions 

of mT on R – 1. One can see that, except experimental 

data by Castro et al. [5], the linear dependence of mT  on 

R – 1 is fairly good fulfilled for all the data corresponding 

to direct and computer experiments. The slope of the 

straight line 7 obtained using Thomson’s formula (1) and 

providing that sl  190mJ/m2, coincides in general with 

the slopes of lines 1 and 5 describing our MD results and 

experimental results by Dick et al. [6]. The value 

sl  270mJ/m2 [11] gives another slope which does not 

agree with our MD results. 

 

4. CONCLUSION 
 

Very good agreement of our MD results for the 

size dependence of the melting temperature with the 

available experimental data demonstrates that com-

puter simulation methods, including MD, may be 

really competitive in nanoscience with direct (labor-

atory) experiments. Besides, our MD results confirm 

the reliability of the available experimental data on 

melting and freezing of Au nanoparticles as well as 

former MD results of other authors. At the same 

time, some specific structural features of Au 

nanoclusters as well as of the melting temperature 

behaviour have been revealed in our MD experi-

ments. Some of them have no satisfactory explana-

tions yet. These experiments have also confirmed the 

applicability of thermodynamics and, in particular, 

of original Thomson’s formula (1) to small nanoparti-

cles of 1-5 nm in radius. 
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