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The paper describes the nanostructured coatings produced by C-PVD method at various deposition 

conditions. Samples with thickness of 2, 3 mm and diameter 10, 42 mm were constructed of steel 

0.55 % Fe, 0.45 % C with polished surface. The samples were tested by XRD (small angle X-Ray 

diffraction), SEM with EDX, AFM, scratch – tester REVETEST, tests of wear resistance and acoustic 

emission, nanoindenter before annealing. It was discovered that the size of nanograins varied from 3,3 nm 

to 8 nm by annealing at 500°, 800° and 1000°C. By dint of μ- PIXE were discovered the segregation process 

of impurities at the junctions of interfaces and at nanograin boundaries. Moreover as a result of the 

thermal annealing hardness of coatings increased on 18- 20 %. 
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1. INTRODUCTION 
 

Multicomponent and nanostructured coatings are 

being nowadays one of the most promising protective 

materials because of their high hardness, high 

abrasion, corrosion and fatigue resistance as well as 

high temperature of oxidation, etc. [1-10]. It is well 

known that binary - TiN, CrN, MoN, triple - TiNAl, 

TiCrN, and quaternary - Ti-Zr-Si-N, Ti-Hf-Si-N [2-4] 

compounds are commonly used for wear protection, 

corrosion protection, and possess high thermal stability 
even up to (900 ÷ 1000)°C.  

Recently published works [2-5] have shown that 

nanostructured (nanocomposite) (Ti-Hf-Si-N) coatings, 

obtained by C-PVD method may have two-phases: 

(Ti, Hf)N - solid solution phase and α-Si3N4 - 

amorphous phase at the same time these coatings 

exhibit high hardness up to 48 GPa (superhardness), 

along with low friction coefficient of 0.12 to 0.45 and 

thermal stability up to 900 C. Therefore, it is of 

particular interest to add to such system Nb, which has 

(as Hf) a high enthalpy of mixing, for improving the 

resistance to high temperature oxidation and possibly 

to improve other physical and mechanical properties of 

coatings such as abrasion resistance and elastic 

modulus. 

For providing of studies multielement coatings (Ti, 

Hf, Nb, Si)N were selected. According to the proposed 

and experimentally proven concept of high entropy 

multicomponent alloys such coatings significantly 

improve thermal stability of the material [1]. 

Therefore, the creation of new types of nanocomposite 

(nanostructured) coatings on the basis of (Ti, Hf, Nb, 

Si) N by means of cathode vacuum arc evaporation 

(CAVD) and subsequent study of their physical and 

mechanical properties is an important task of modern 

materials science. 

 

2. EXPERIMENTAL AND DETAILS 
 

A Cathodic - Arc - Vapor - Deposition "Bulat - 3T" 

with HF generator [3, 5] was applied. Potential bias 

was applied to the substrate from the HF generator of 

pulsed damped oscillations with a frequency of 

< 1 MHz. The duration of each pulse of 60 us, with a 

repetition rate of ~ 10 kHz. The amount of negative 

self-bias potential of the substrate caused by HF diode 

effect was 2 + 3 kV. 

Cathodes of the multicomponent alloys (Ti, Hf, Nb, 

Si) N were prepared by vacuum-arc melting in an 

atmosphere of high purity argon. 

The bonding state’s were determined using 

photoelectron spectroscopy (XPS, Kratos Axis Ultra) 

with a nanochromatic Alkα (1486,71 eV, X-ray 

emission/radiation 15 kV/10 mA). 

The elemental composition, was studied with 

scanning electron microscope (SEM) with EDX - 

mocroanalysis JEOL - 7000F (Japan). To perform the 

element analysis over a sample depth, we employed the 

Rutherford backscattering (RBS) method with He+ ions 

of 1.7 MeV (the scattering angle was θ  170°) with a 

normal fall of probing ions to the surface of coated 

samples. The energy resolution of detector was 13 keV. 

A dose of helium ions was 5 µ Ci. To interpret the RBS 

spectra and to obtain the element profiles over the 

coatings depth, we employed standard software. 

The phase composition and structural studies were 

performed on the X-ray diffractometer DRON-3M and 

Rigaku RINT-2500 - MDG Japan, in the filtered 

radiation of Cu-Ka using in the secondary beam 

graphite monochromator. The diffraction spectra were 

surveyed in the point-by-point scanning mode with a 

step 2θ  0.05 - 0.1°. We also employed the diffraction 

of X - rays using a grazing incidence beam, in Cr 
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emission, at angle 3°. In order to study the stress-

strain state of the coatings, we employed the method of 

X - ray strain measurements («α - sin2 φ» - method) and 

its modifications, which are commonly applied to the 

coatings with strong axial texture [10 - 14]. 

The distribution of elements in nanostructured 

coatings has been studied by micro-proton beam 

induced X-ray emission (µ-PIXE) measurements at an 

initial particle energy of 1,4 MeV – these 

measurements were performed using an IAPC (Sumy) 

electrostatic accelerator with a beam diameter of 0,4 

µm the raster was  50?50 at a step of 0,5 µm and a 

change of 3÷10-10C/pixel. 

To determine the adhesive/cohesive strength, 

scratch resistance, and also to study the fraction 

mechanism the scratch tester REVETEST see (CSM 

Instruments) [6] was used (Fig. 1). The scratches were 

applied to the coating surface at continuously 

increasing load by diamond spherical indenter 

"Rockwell C" with a radius of curvature of 200 µm. 

Simultaneously the power of acoustic emission, friction 

coefficient and the penetration depth of the indenter 

and the value of the normal load (FN) were recorded. 

Three scratches were applied to each sample. 
 

 
 

Fig. 1 – Experimental setup for the determination of the 

adhesive/cohesive strength.  

 

Tests were carried out under the following 

conditions: the load on the indenter increased from 0.9 

to 70 N, speed of the indenter movement was 

1 mm/min, scratch length – 10 mm, the loading rate -

6.91 N / min, the frequency of a digital signal – 60 Hz, 

acoustic emission – 9 Db. Tests determined the 

minimum (critical) load LC1, which corresponds to the 

beginning of the indenter penetration into the coating; 

LC2 - top when the first cracks appear; LC3 - the peel of 

some parts of coating; LC4 - plastic abrasion of the 

coating to the substrate. Registration, during a test, (a 

relatively large number of different physical 

parameters) improves the reliability and accuracy of 

the method the critical load determination. The 

deformation of the coating by the diamond indenter 

was investigated further using the integrated optical 

microscope and electron-ion scanning microscope 

Quanta 200 3D, equipped with an integrated system of 

Pegasus 2000 for microanalysis. 

 

 

3. RESULTS AND DISCUSSION 
 

Coatings deposition was performed by vacuum-arc 

method on set up Bulat-6. A constant negative 

potential Us = (-40 - 200) V was applied to the 

substrate, the residual gas pressure was 0.0066 Pa and 

arc current did not exceed 85 A. Figure 2 shows image 

of a coating (Ti, Hf, Nb, Si) N in the initial state. 
 

 
 

Fig. 2 - The image of surface of nanocomposite combined 

coatings obtained by scanning electron microscopy. 

 

Before turning to the analysis of X- ray data, it 

should be noted that, for understanding of the sequence 

of processes occurring in the surface region during the 

deposition, it is necessary to compare the heat of 

formation of possible nitrides. 
 

Table 1 – Crystallite size and the lattice period at different 

temperatures of annealing 
 

№ Annealing 

temperature °C 

а, nm Crystallite 

size, nm 

1 - 0,4344 5,0 

2 1000 0,42752 7,7 

3 500 0,44398 5,9 

4 800 0,4352 6,4 
 

Table 2 - The enthalpies of formation ( H) of the five binary 

nitrides 
 

 TiN HfN NbN Si3N4 

H, 

KJ/mole 

-

337,7 

-

373 

-

234,7 

-

738.1 
 

In accordance with [7] the enthalpies of formation 

( H) of the four binary nitrides are shown in Table 2. It 

means that the heat of formation of all systems is a 

relatively large and negative, indicating that there is a 

high probability of the formation of such systems 

through the transfer of material from the target to the 

substrate. In this case, the proximity of the values of 

the heat of formation of TiN and HfN creates 

conditions for the formation of sufficiently 

homogeneous solid solution (Ti, Hf, Nb) N. 
Figure 3 and Table 2 shown study the X-ray 

diffraction. The first annealing (Fig. 3 curve 2) leads to 
an abrupt relaxation of compressive stresses, which is 
accompanied by a decrease of lattice period in direction 
perpendicular to the plane of growth. This annealing 
leads to a considerable recrystallization processes. 
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Then, annealing up to 800 C (Fig. 3 curve 4) has 

practically no effect on the stress state, leaving period 
of lattice the same. A significant relaxation processes 
were detected after annealing up to 1000 C, which 

leads to the sharp decrease of the lattice period in the 
direction perpendicular to the plane of growth. At the 
same time the average size of the crystallites are 
exposed to the increase throughout the all temperature 
range of annealing and reaches maximum size of 7.7 

nm at 1000°C, i.e. increases for more than 60 % 
compared to the initial state. 

 

 
 

Fig. 3 - Diffraction spectra of coatings obtained by GXRD: 1- 

as deposited 2 – annealed at 1000?C, 3 - annealed at 500°C, 4 - 

annealed at 800°C. 

 

The following figure 4 shows the energy spectra of 
backscattered 4He+, obtained from samples coated with 

(Ti, Hf, Nb, Si) N on a steel substrate. 
 

 
 

Fig. 4 - Energy RBS spectra obtained for coatings 

(Ti, Hf, Nb, Si) N, at the initial state and after annealing at T 

= 500°C, 800°C, 1000°C for 30 min. in air 

 

As it is seen from the figure, the concentration of 
Ti, Hf, Nb, Si elements after annealing at T = 500°C 
and 800 C is comparable to concentration of these 

elements before annealing, which indicates the 
uniformity of distribution of elements through the 
thickness of the coating. Annealing of samples up to 

1000 C for 30 min. led to formation of oxide film on the 

surface of coating and to redistribution of the elements 
in the form of films. 

Preliminary results obtained by μ-PIXE microbeam 

in depth and on the surface of nanostructured coatings 
showed that the annealing to 800°C leads to the 
segregation of impurities (for example, the elements Hf 
and Nb) in nanograins. A siliconitride layer which is 
formed as a result of the thermal diffusion of Si along 
nano-grain boundaries leads to the formation of SiNx - 
amorphous phase. It is also reflected in the results of 

XPS (peak in radon 101.9 KeV) wherein Si 
concentration in this compound estimated as 
(4.9 ~ 5.2) at %. 

Figure 5 a shows the results of tests performed on 
the scratch tester REVETEST of sample Ti- Hf- Nb- Si) 
N at the minimum (critical) load LC1 = 2,46 H and at 
the load at which the first cracks appear LC2 = 10,25 N. 

 

 
 

а 
 

 
 

b 
 

Fig. 5 - Results of adhesion of tests system coatings 

(Ti, Hf, Nb, Si) N steel substrate: a - dependence AE (1), μ (2), 

and the depth of penetration (3); b - structure of the coating in 

the fracture zone at loads in the range 0.9 - 90.0 N 

 

It should be noted that when the load increases, the 
curve describing the dependence of friction coefficient on 
the load gets an oscillatory character. The increase of the 
friction coefficient is accompanied by a surge of acoustic 
emission. The above described behavior of all recorded 
parameters in these experiments (coefficient of friction, 

hardness) shows that the hard coating with thickness of 
≤ 1μm deposited on a surface of softer material (steel) 
shows a substantial resistance to diamond indenter to 
almost its full abrasion under high loads. [15-16]. 
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When testing coatings it can be can clearly 

distinguished different threshold values of critical load 

which lead to different typed of destruction. What is 

more only a minimum (critical) LC1 load and a load at 

which the first crack appears LC2 can be associated 

with the adhesive destruction of coatings. 

Destruction of the coating begins with the 

appearance of chevron cracks at the bottom of wear 

groove, which causes the increase of local stresses and 

friction. This leads to the subsequent rapid abrasion of 

coating (Fig. 5b). 

According to the results of adhesion tests, cohesive 

destruction of the coatings (as-deposited) (Ti- Hf- Nb-

 Si) N appears at the minimal (critical) load 

LC1  2.38 H and adhesion destruction occurs at a load 

when the first crack appears LC2 = 9.81 N. Figure 

6 (a, b, c) shows the results of scratch tests of samples 

after annealing at 500, 800 and 1000°C. according to 

obtained results it can be argued that the greatest 

resistance to wear is demonstrated by coatings after 

high-temperature annealing up 1000°C (lowest takeout 

of coating material (c)). Accordingly, the degree of wear 

resistance decreases with decreasing stresses, and 

perhaps this is also associated with an increase of 

friction coefficient (although as can be seen from the 

results of EDX analysis there is an oxide film with 

thickness of 60 – 75 nm). 

 

4. CONCLUSIONS  
 

It is shown that high temperature annealing leads 

to increase of the nanocrystallites size of the solid 

solution from 3 nm to 7.7 nm and to different 

recrystallization processes. High macro- and 

microdeformation occurring in the coating seems to be 

related to an “atomic peening” effect resulting to non-

ordered distribution of titanium atoms implanted to 

the film during its growth. In the course of annealing, 

the macro- and micro-deformation relaxed. The 

relaxation was accompanied by formation of 

deformation packing defects in a metallic sublattice of 

(Ti, Hf) N, (Ti, Nb) N solid solution. 

 
 

a 
 

 
 

b 
 

 
 

c 
 

Fig 6 - The results of wear resistance tests obtained by scratch tester REVETEST of samples (Ti, Hf, Nb, Si,) N: a – after 

annealing 500°C, b – after annealing 800°C, с – after annealing 1000°C 
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