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The self-consistent theory of plastic deformation in solid was considered within the framework of the 

presence of the nanoscale defects ensemble. The synergetic equations describing the self-organization of 

nanoscale defects were analyzed.  An effective potential that distinguish plastic and solid states was ob-

tained. For the plastic deformation waves the dispersion law depending on the diffusion coefficient of the 

defects was considered.  
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1. INTRODUCTION 
 

Probably the most characteristic feature of the met-

al is its plasticity, or the ability to be subjected greater 

deformation without breaking. While practical 

knowledge about the form-changing metals reach deep 
into thousand years, our understanding of physical 

phenomena associated with the plastic deformation, 

developed only in recent decades. Some of the basic 

principles were explained, but many related phenome-

na still require considerable further research before 
they are fully understood [1-11]. 

Furthermore the study of plastic deformation in 

amorphous materials (glassy materials, colloids, granu-

lar media, etc.) and crystals and flow of continuous 

have received great development in recent years [1-6]. 
The paper [11] studied the plastic deformation in the 

granular material at a constant angle of inclination of 

the material. Experiments were carried out for two 

different types of grains: glass beads and sand. 

To describe the process of plastic deformation in 
crystals one can use a dislocation glide model based on 

the thermodynamics and kinetics [8,9]. In 1923, G.I. 

Taylor and C.F. Elam [7] found that plastic defor-

mation occurs by slipping of crystallographic planes in 

definite directions. Thus the phenomenological descrip-
tion of the material behavior is a basis for describing 

the plastic flow in solids. The nonlinear theory also 

implies that harder materials, which do not undergo a 

microstructural instability, may form isolated shear 

bands in weak regions or at points of concentrated 
stress [10]. 

It is known, that the most impressive feature of 

metals during plastic deformation is a strain hardening 

or the ability to become stronger during deformation. 

Clarification of the nature of the strengthening is a 
very difficult problem to solve. However dislocation 

theory provides many useful ideas. Strain hardening 

leads to a strong consolidation of metal, and much 

more effective way of increasing its resistance to de-

formation is doping by other elements. The impact of 
even very low concentrations of solutes atoms on the 

strength of metallic crystal can be quite substantial. 

Trying to understand the behavior of complex alloys 

during plastic deformation, it is necessary to examine 

the impact of the alloying elements in solid solution 

(that essentially can be regarded as nanoscale defects).  

Although the deformation often occurs through slid-

ing, it is not the unique mechanism by which plastic 

deformation is performed. For thousands of years it 
was known that metal, machining hardened, can again 

return the initial plasticity by heating. There are a 

number of interesting processes that lead to this final 

result, beginning with the redistribution of defects in 

deformed crystals and completed with the replacement 

of the deformed grains (recrystallization).  
As shown, a non-conservative movement of disloca-

tions, which are formed at the intersection of disloca-

tions, can lead to the formation of point defects - vacant 

lattice sites (vacancies) or interstitials. In fact impurity 

atoms are also point defects. Point defects can occur not 
only as a result of strain but also when irradiated with 

nuclear particles; hardening of temperature close to the 

melting point also captures the excess of vacancies. 

The role of vacancies in the diffusion process is well 

known. When returning from a strain hardening state 
of the metal at low temperatures as interstitial atoms 

and vacancies can move in contrast to dislocations. Re-

distribution dislocation occurs at higher temperatures 

then vacancies. Interstitial atoms are more mobile than 

vacancies, and therefore more capable of scattering in 
various kinds of defects, such as vacancies or grain 

boundaries, but their formation requires great energy. 

Therefore quite relevant at the moment is the problem 

of the influence of point defects on the behavior of the 

plastic deformation of solids. In this work we propose a 
phenomenological framework within which the transi-

tion from a solid state to a plastic flow is presented as a 

process of self-organization of the ensemble of na-

noscale defects. 
 

2. BASIC EQUATION 
 

The basic laws of plastic flow can be naturally con-

sidered within the framework of the hydrodynamic 
theory [12,13]. The main parameter m  of this theory 

may be defined as the free local volume or as the con-

centration of vacancies:  
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 where 
0
( , )n r t  – is the density of “lattice sites”, depend-

ing on both the temperature and the strain; ( , )n tr is 

the number of particles per unit volume of material (it 

depends on the strain) [12]. For amorphous solids and 

continuous media the density of “lattice sites” has an-

other interpretation: 
0
n  can be determined as the par-

ticle density after the compression at a constant near-

est neighbor distance [13]. But simplifying our ap-

proach further for parameter m  we will use the vacan-

cy concentration denotation. 
It turns out that the value of m is critical for the 

description of the plastic deformation. Indeed, when 

there are no vacancies m = 0  (solid state), in the pres-

ence of vacancies m 1(plastic deformation).  

Setting the rate of change of vacancy concentration 

it is convenient to use dynamical equation for the den-

sity [14, 15] 
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where   is an average density,   represents its vari-

ation, 



=

t

u
v  is the strain rate.  

Usually deformation is accompanied by the 

changes in the interatomic forces, the measure of which 

is elastic mechanical stress. Therefore, to describe a 

complete picture of the plastic deformation is necessary 
to consider the effect of mechanical stresses σ. 

So using the definition (2.1), the relation with the 
strain rate v , with mechanical stress σ, and with the free 
energy, we obtain the equation [16,18] 
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Here 
m

t  is a characteristic relaxation time, 
0

 is a 

kinetic coefficient,    / r ; ,
m

A g  - are the positive 

constants. 

The dynamic equation for the strain rate can be 

taken by the form [16,18]  
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where 0  is the dynamic viscosity, g
v is a positive 

coupling constant.  

The equation for the mechanical stress 
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accounts the relaxation during time t  to the value  e , 

given by the external influences, ( g is a positive cou-

pling constant,   
0  is a kinematic viscosity). 

Considering all three differential equations (2.3)-

(2.5) at once we get analogue of the Lorenz system [17] 

taking into account inhomogeneities in the coordinate.  

The Lorenz system is known as simple scheme that 

describes the self-organization in different systems [17-
19]. It is based on three parameters: order parameter 

(for our consideration it is a vacancy concentration), 
conjugated field (strain rate v ), and  a control parame-

ter (the stress  ).  

As a result, solving the system (2.3)-(2.5) we can de-

scribe a solid-plastic transition as self-organization of 
nanoscale defects. But in general, this system is solved 

only numerically. So we can use a realistic approxima-

tion that the relaxation time of the vacancy concentra-

tion is sufficiently larger than other time scales. 

As a result, the dependence for the conjugated field 

and control parameter for the homogeneous case 
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were obtained. Here the dimensionless variables were 

used the parameter   is introduced as 
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Substituting Eqs.(2.6) into the dynamic equation for 
the vacancy concentration we can get the effective po-

tential 
 

 




 
   

 

2 2

2
ln 1 ,

2 2

em m
V m           

(3.11) 
 

which distinguish the order (plastic deformation) and 

disorder (solid) states 

 
3.  WAVE OF PLASTIC DEFORMATION  

 

We now consider the wave deformation mode in the 

presence of spatial heterogeneity. 

Deformation is the variation of the relative position 
of the particles in solid. So it is linked to the particles 

displacement relative to each other (so-called relative 

strain). 

Considering the relation of the mechanical stress 

with relative strain instead (2.5) we get 
 


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t
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where g is a positive coupling constant again, D is 

a diffusion coefficient of the defects. 

Relative strain is a result of changes in interatomic 

distances and rearrangement of blocks of atoms. Usual-

ly deformation is accompanied by the change in the 
interatomic forces, the measure of which is the me-

chanical stress. Complementing Eq.(3.1) by nonhomo-

geneous Maxwell's equation for the viscous-elastic me-
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dium with relaxation time τ = η / μ (η – shear viscosity; 

μ – shear modulus) we have  
 

 
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Considering the solution of two differential equa-
tions (3.1)-(3.2) in the vicinity of the stationary states 

(which are determined by the conditions   0, 0 ), 

we used the expansion in the form of plane waves. As a 

result the dispersion law  
 

      2 2 2,
k

D k   (3.3) 

 

was obtained. It is evident from the equation (3.3) that 

the frequency of plastic deformation waves depends on 

the diffusion coefficient of defects. 

4. CONCLUSION 
 

Our consideration was shown that the plastic de-

formation in solids is determined by the behavior of 

ensemble of the nanoscale defects. The main parame-
ters as vacancy concentration, strain rate and mechan-

ical stress define the possibility of usage of synergetic 

representation.  

Accounting relative strain and mechanical stress 

the plastic deformation waves were considered. Where-
in the dispersion law was obtained subjected to the 

diffusion constant of the nanoscale defects. 

The mentioned results may be used for analysis of 

the processes occurring during machining, surface 

treatment of metals, in order to predict experiment 

errors and to predict the behavior of the solid system. 
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