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NanocrystallineZnOfilmsweredepositedontoglass substrates in
the temperature rangeof 473–673Kusingpulsed spraypyrolysis.
The structural, substructural, and optical properties of the films
were investigated bymeans ofX-ray diffraction analysis, Raman
scattering, and Fourier transform infrared (FTIR) spectroscopy.
The effect of the substrate temperature (Ts) on the coherent
scattering domain (CSD) sizes L, microstrains e, and microstress
s grades, and the average density of dislocations r in the films
were estimated through the broadening of X-ray lines using the
Cauchy and Gauss approximations and the threefold function

convolution method. The ZnO films grown at Ts¼ 623–673K
possessed the highest values of L, and the lowest of e, s, and r,
indicating high-crystalline quality. The Raman spectra showed
peaks located at 95–98, 333–336, 415, 439–442, 572, and 578–
584 cm�1, which were interpreted as E2

low(Zn), (E2
high�E2

low),
E1(TO), E2

high(O), A1(LO) and E1(LO) phonon modes of the
ZnO wurtzite phase. The FTIR spectra showed relatively weak
signals at 856, 1405, and 1560 cm�1, corresponding to the C–H
and C–O stretching modes, in addition to the main Zn–O mode
at 475 cm�1, indicating a low content of precursor residues.
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1 Introduction Over the past decade, ZnO has
attracted considerable interest in the research community
due to its unique electrical and optical properties and high-
thermal and chemical stability. Moreover, ZnO is a non-
toxic, inexpensive, and relatively abundant material. ZnO
belongs to the group of II–VI compound semiconductors
and possesses a wide direct bandgap (Eg¼ 3.37 eV at 300K)
and the highest exciton binding energy (60meV) among
binary compounds [1]. This semiconductor is a promising
candidate for application in optoelectronic devices such as
light-emitting diodes, ultraviolet lasers and detectors, and
transparent electronics [2–4] among others. Furthermore,
ZnO thin films are widely used in solar cells as either
transparent conductive or window layer [5]. Aluminum-
doped zinc oxide films (ZnO:Al, AZO) are strong
alternatives to transparent conductive oxides (ITO, FTO)
that are currently used in the solar cell structure [6].

ZnO films are prepared by various techniques, such as
chemical vapor deposition [7], magnetron sputtering [8],

sol–gel method [9], spray pyrolysis [10–12], etc. Among
them, spray pyrolysis is a relatively simple, versatile, low
cost, and non-vacuum approach to deposit large area ZnO
thin films with controllable properties onto the substrates of
different materials, including flexible ones.

In thin film solar cells [13, 14], the main function of
the conductive and window layers is the transmission of a
greater number of photons from incident solar radiation.
ZnO thin films, which are used for this purpose, should
be in a single phase and have high transmittance and
electrical conductivity, low microstresses and micro-
strains grades, and a small dislocation density. Increased
transmission in ZnO layers could be achieved by deposition
of nanocrystalline films which would have a larger band gap
due to the quantum confinement effect [15, 16].

The literatureanalysishasshown[17–19] that thesubstrate
temperature has the greatest influence on the sub-structure and
optical properties of ZnO films. In this work, the influence of
the substrate temperature on the structural, substructural, and
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some optical properties of the nanocrystalline ZnO films
deposited by pulsed spray pyrolysis was characterized.

2 Experimental details
2.1 Synthesis of ZnO thin films Nanocrystalline

ZnO films were deposited by pulsed spray pyrolysis
technique onto cleaned glass substrates in the temperature
range of 473–673KwithDТ¼ 50K. The temperature control
was performed using thermocouple and thermocontroller
allowing to adjust the temperature with an accuracy �5K.
The 0.2M solution of zinc acetate dihydrate in deionized
water was used as the initial precursor. In addition,
hydrochloric acid was used to boost the solubility of initial
precursor. The air flowwith pressure 0.2MPa was utilized as
the carrier gas in order to transport the dispersed precursor
onto heated substrate surface. The thickness of condensates
was varied in the range of 0.6–1.3mm, depending on the
substrate temperature. The details of the laboratory setup and
the physical and chemical parameters of ZnO thin film
deposition are presented in Ref. [20].

2.2 Substructural properties The structural and
substructural properties of ZnO films were studied by X-ray
diffraction analysis using a Bruker D8 with the Ka radiation
of a Cu anode (l¼ 0.15406 nm,U¼ 40 kV, and I¼ 40mA).
The measurements were carried out in the angle range 2u
from 208 to 808, where 2u is the Bragg angle.

The average coherent scattering domain size (CSD) L
and the microstrains level e in the ZnO films were
determined precisely using the physical broadening of the
X-ray lines. The separation of the diffraction broadening
caused by the physical b and instrumental b effects was
performed using the X-ray line profile approximated by the
Cauchy and Gauss functions [21, 22].

Subsequently, to allocate the contributions of physical
broadening caused by the dispersion of CSDs and micro-
strains, the graphical Hall method was used, taking into
account their different dependences on the diffraction
angle. According to this method, the graphics were built in
ðb cos u=lÞ2 � ð4 sin u=lÞ2, ðb cos u=lÞ � ð4 sin u=lÞ coor-
dinates. The intersection of the straight line with the x-axis
was used to determine the parameters: 1/L, using the Cauchy
function for the line profile approximation, and1/L2, using the
Gauss function. The microstrains grade can be determined
from the slope of the obtained straight line to the y-axis [23].

Substructural properties of ZnO films were studied
through the measurements of physical broadening of the two
orders of reflection from the crystallographic planes with
multiple Miller indices or from planes that are deviated at
low angles (<158). The angle between the planes for a
hexagonal lattice is given by the following expression:

cosw ¼
h1h2 þ k1k2 þ 1

2
ðh1k2 þ h2k1Þ þ 3

4
a2

c2
l1l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½h21 þ k21 þ h1k1 þ 3
4
a2

c2
l21�½h22 þ k22 þ h2k2 þ 3

4
a2

c2
l22�

r

ð1Þ

where w is the angle between the investigated planes (h1k1l1)
and (h2k2l2); and а and с are the lattice parameters of the
material.

The microstrains grades and the size of CSDs in
the films were found using the threefold convolution
method [24, 25]. In this case, the substructural character-
istics of the films can be determined using the following
relations [25]:

L ¼ l
cos u1

� tB1 � cB2

tb2f1 � b2
f2

; ð2Þ

e2 ¼ cb2f1B2 � b2f2B1

16tg u1 cB2 � tB1ð Þ ; ð3Þ

where t ¼ tg2u2=tg2u1, c ¼ cos u1=cos u2, bfi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið Þ2� bið Þ2

q
,

u1 and u2 are the diffraction angles of the line pair that
is being analyzed; and Bi, bi, and bfi are the measured,
instrumental, and physical broadening of the corresponding
X-ray lines, respectively.

It should be noted that we defined the broadening B of
the diffraction peaks (100)–(200), (101)–(202), and (102)–
(103) (the angle between planes is �118) of the hexagonal
phase.

The magnitude of the microstresses in the films was
determined by the formula s ¼ E � e, whereЕ is the Young’s
modulus, which can be found for the hexagonal phase from
the relation [17]:

Ehkl¼
h2 þ ðhþ2kÞ2

3 þ al
c

� �2
� �2

s11 h2þ ðhþ2kÞ2
3

� �2
þs33 al

c

� �4
þ 2s13þ s44ð Þ h2þ ðhþ2kÞ2

3

� �
al
c

� �2 ;

ð4Þ

where s11, s13, s33, and s44 are the material malleability
constants, а and с are the lattice parameters, and (hkl) are the
Miller indices.

In our analysis, we used the following reference data:
s11¼ 7.858� 10�12, s13¼ 2.206� 10�12, s33¼ 6.940� 10�12,
and s44¼ 23.57� 10�12Pa�1 [17]. The lattice parameters a and
c were determined experimentally in our previous work [20].

Subsequently, the average dislocation density in ZnO
films was estimated using the calculated CSD sizes and the
microstrains grades. The average dislocation density at the
subgrain boundaries can be found by the formula [26]:

rL ¼ 3n

L2
; ð5Þ

where n is the number of dislocations on each face of the six
planes of the CSD block.

If the dislocations are mostly located inside the
subgrains, the dislocation density can be obtained from
the expression [26]

re ¼
K
F

2e
d0

� �2

; ð6Þ
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where K is the constant depending on the dislocation
distribution function (K¼ 4 for the Gauss function, K¼ 25
for the Cauchy function), 2e is the width of the microstrains
distribution, F is the constant, taking into account the
increased dislocation energy under interaction with other
dislocations, and d0 is the interplanar distance.

Assuming n¼ 1 and F¼ 1, Eq. (5) allows to estimate the
lowest limit of the dislocation density rL, and Eq. (6) the
highest limit of re. To determine the total dislocation
density, including the dislocations at the subgrains and the
inside of CSD blocks, we used the relation [26]

r ¼ 15e
d0L

: ð7Þ

2.3 Raman and FTIR spectroscopies The Raman
measurements were performed at room temperature using a
confocal Raman microscope (WiTec Alpha 300). This
device was equipped with an excitation laser with a
wavelength of 532 nm and intensity of 1mW, 600 lines
mm�1 gratings, an optical fiber with diameter of 100 nm,
and a Nikon objective with a 100� magnification. The
measurements were carried out in the spectral range from 80
up to 800 cm�1. The Raman imaging of the samples was
performed over a 10� 10mm2 area with a step of 200 nm for
the Raman peak at 437 cm�1.

The FTIR spectra were recorded using an Agilent Cary
630 FTIR spectrometer in the range of 400–4000 cm�1 with
a spectral resolution of 1 cm�1. The method of light
reflection was applied for measurements which allowed
using conventional glass substrates with deposited ZnO
films. The penetration depth of infrared radiation into the
films was �0.9mm.

3 Results and discussion
3.1 Substructural properties of ZnO films As we

reported in previous work [20], ZnO films had the poly-
crystalline structure of the hexagonal modification with
the grain size in the range of 20–300 nm, revealing the
nanocrystalline nature. The films were grown along the axial
texture [100] at Ts� 573K and [002] at Ts> 573K. The
experimental values of the lattice parameters of the material
were determined as a¼ 0.32477–0.32554 nm, c¼ 0.51507–
0.52111 nm, and their ratio c/a¼ 1.5822–1.6046.

The calculated results of the average size of CSDs and
the microstrains grades in ZnO films, deposited at different
substrate temperatures Ts, in the perpendicular directions to
the crystallographic planes (100)–(200), (101)–(202), and
(102)–(103) are summarized in Table 1. Figure 1 shows the
obtained values using the threefold convolution method in
the perpendicular directions to the planes specified above.

It should be noted that the calculated size of CSDs and
the microstrain values in ZnO films using the threefold
convolution method fall between the data obtained using the
approximation of X-ray lines by the Cauchy and Gaussian
functions, as it must be on the theoretical considerations.
It indicates the validity of the obtained results from the
analysis of X-ray line broadening.

As the substructural parameters of the films determined
by the threefold convolution method are the most accurate,
the following discussion and supplemental calculations of
the microstresses grades and the density of dislocation were
performed using them.

One can be seen from Table 1 and Fig. 1a that as the
substrate temperature is increased from 473 to 673K, the
size of CSDs tends to increase: from L �14 up to 23 nm in
the [100] direction, from L �11 up to �20 nm in the [101]
direction, and from L �10 up to �63 nm in the [102]

Table 1 The size of CSDs (L) and the microstrains grades (e) of ZnO films deposited at different substrate temperatures.

L (nm) e�(10�3)

approximation function approximation function

Ts (K) (hkl) Gauss Cauchy convolution Gauss Cauchy convolution

473 (100)–(200) 13.8 15.0 13.9 0.010 1.270 0.016
(101)–(202) 11.1 11.0 11.1 0.001 0.080 0.007
(102)–(103) 9.4 9.6 10.0 0.004 0.440 0.006

523 (100)–(200) 13.1 13.4 13.1 0.003 0.410 0.009
(101)–(202) 10.8 11.9 10.9 0.014 1.650 0.035
(102)–(103) 9.4 10.1 10.0 0.012 1.230 0.010

573 (100)–(200) 18.5 20.8 18.6 0.008 1.360 0.011
(101)–(202) 11.8 10.1 11.9 0.014 2.420 0.027
(102)–(103) 9.2 9.3 9.9 0.001 0.080 0.003

623 (100)–(200) 22.3 25.3 22.5 0.006 1.170 0.008
(101)–(202) 16.4 13.2 16.7 0.009 2.420 0.015
(102)–(103) 12.4 10.8 13.5 0.011 1.890 0.007

673 (100)–(200) 20.6 21.2 20.6 0.001 0.320 0.005
(101)–(202) 18.2 13.4 19.1 0.010 3.210 0.012
(102)–(103) 39.0 101.1 62.3 0.027 4.830 0.007
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direction. We have observed similar dependences of L
versus Ts in Ref. [27] for compounds CdTe, ZnS, ZnSe, and
ZnTe obtained by closed space vacuum sublimation.

At the same time, the microstrain grades in ZnO films in
the [100] direction was decreasing from e �1.6� 10�5 to
�0.5� 10�5, in the [101] direction from e �3.5� 10�5 to
�1.2� 10�5, and in the [102] direction from e �1.0� 10�5

to �0.7� 10�5 (Fig. 1b). A similar reduction in e was
observed in thin films of CdTe and ZnTe at substrate
temperatures Ts > 573K [27, 28]. It should be mentioned
that the calculated values of microstrains in ZnO films are
significantly lower than the values obtained in Ref. [18],
where ZnO films were deposited by the spray pyrolysis
method at Ts¼ 673K with a different concentration of zinc
acetate dihydrate (0.05–0.15M). The authors found that
the microstrains grades in ZnO films was in the range of
e¼ (3.7–5.8)� 10�4 in the [100] direction.

Using the calculated values of microstrains, we have
defined the microstress levels in the nanocrystalline ZnO

films (Table 2). It was found that the microstress levels in
the thin films were s¼ 0.48�1.53MPa. Significantly higher
values of swere obtained by Rao et al. in Refs. [29, 30]. The
authors found that with increasing Ts from 623 to 723K, the
compressive stress levels decrease from 1.77 to 1.47GPa.

Table 2 and Fig. 2 show the calculated results of the
dislocations at the boundaries of subgrains (rL) and inside
CSD blocks (re), and the total concentration (r) in ZnO
films in the perpendicular direction to the (100) plane.

Similar investigations were carried out by authors of
Refs. [18, 31]. Shewale et al. [31] determined that in
nanocrystalline ZnO films with the thickness d¼ 0.135–
0.392mm, deposited at Ts¼ 473K, the concentration
of dislocations was in the range of r¼ (1.29–4.15)�
1015 linesm�2.

The authors of Ref. [18] obtained the values of r
¼ (2.4–5.8)� 1013 linesm�2. As can be seen in comparison
with the results obtained by other authors, the films in this
work are characterized by relatively low values of r¼ (1.3
�6.1)� 1013 linesm�2. As shown in Fig. 2, the increase of
Ts tends to decrease r in ZnO layers.

Figure 1 Effect of the substrate temperatures Ts on (a) the size
of CSDs and (b) the microstrain grades of ZnO films in the
perpendicular direction to the crystallographic planes (100)–(200)
(1), (101)–(202) (2), (102)–(103) (3). The threefold convolution
method was used for approximation.

Table 2 The microstress levels and the density of dislocations in
the ZnO films.

Ts
(K)

(hkl) s
(MPa)

rL
(1012 linesm�2)

re
(1011 linesm�2)

r (1013

linesm�2)

473 (100) 1.53 1.6 2.1 6.1
523 (100) 0.86 1.7 0.6 3.6
573 (100) 1.05 0.9 1.0 3.2
623 (100) 0.76 0.6 0.5 1.9
673 (100) 0.48 0.7 0.2 1.3

Figure 2 The effect of substrate temperature Ts on (1) the density
of dislocations in ZnO films at the boundaries of subgrains,
(2) inside the CSD blocks, and (3) the total concentration of
dislocations in the perpendicular direction to the planes (100)–
(200).
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3.2 Raman spectroscopy Raman spectroscopy is a
powerful technique used to study the chemical composition
and the quality of the crystal structure of semiconductor
compounds. The Raman spectra of ZnO films, measured in
the frequency region from 80 to 800 cm�1, are shown in
Fig. 3a.

As seen in Fig. 3a and Table 3, a series of phonon peaks
are observed at the frequencies around 95–98, 333–336,
415, 439–442, 572, and 578–584 cm�1. According to the
literature, these peaks are interpreted as E2

low(Zn) [32, 34],
E2

high�E2
low [32–34], E1(TO) [32, 34], E2

high(O) [7,
32–34], A1(LO) [33], and E1(LO) [7, 32] phonon modes.
The two E2 modes are the most prominent in the spectra:
the E2

high peak, attributed to the oxygen anions, is located
at 439–442 cm�1, and the E2

low peak, attributed to zinc
cations, is located at 95–98 cm�1.

It is known [35] that the crystal quality of ZnO films
has a direct influence on the intensity of the E2 modes.
Furthermore, the E2

high(О) peak is exceedingly sensitive to
the presence of internal defects in the material [34]. The
frequency deviation of the E2

high(О) peak from values in the
bulk material (437 cm�1) is evidence for the presence of
microstresses and crystal lattice defects in the material. In
our case, it is worth to note that as the substrate temperature
increases, the position of E2

high(O) peak shifts from 442 to
439 cm�1, indicating decrease of s and r. These statements

are consistent with the preceding calculations from X-ray
analysis. Figure 3(b and c) shows representative scanning
electron microscopy (SEM) micrographs and the results of
the confocal Raman mapping of the ZnO film surface at
Ts¼ 673K.

The image was constructed from the integrated intensity
in the frequency range of 437� 20 cm�1 at each point of the
sample. As already indicated, this frequency corresponds to
the E2

high(О) mode of ZnO. To increase the contrast of the
image, an offset in the intensity value was introduced.

Figure 3b shows hills on the surface of the film which
coincide with the boundaries of precursor droplets that were
pyrolyzed after the contact with the hot substrate. Other than
that, the surface is mostly quite smooth.

The micro-Raman imaging of the surface near the
footprint of a drop is depicted in Fig. 3c. The bright areas
correspond to the largest peak intensity of 437 cm�1 with the
highest offset with respect to the position of bulk material,
which indicates the local microstresses in structures.
Unfortunately, it was almost impossible to carry out the
measurements on the same area of the film surface by using
these methods, and so the investigated regions shown in
Fig. 3b and c are not the same.

3.3 FTIR spectroscopy Fourier transform infrared
spectroscopy (FTIR) is a complementary technique to XRD
and Raman techniques for investigating chemical compo-
sition and vibrational properties in material science. The
frequencies at which there is absorption or transmission of
light in the films provide an opportunity to identify the
functional bands of chemical elements which are present in
the samples. Particularly, often this approach is used to

Figure 3 (a) Raman spectra of ZnO films deposited at different
substrate temperatures, Ts: 473 (1), 523 (2), 573 (3), 623 (4), 673K
(5). (b) SEM images, and (c) Raman mapping of ZnO film surface
deposited at Ts¼ 673K.

Table 3 The peak assignments from the Raman spectra of ZnO
films deposited at different substrate temperatures.

experimental data

substrate temperature, Ts (K)
473 523 573 623 673
Raman shift (cm�1)
95 97 97 98 97
334 336 333 334 334
– 415 – – –

441 442 440 439 439
– 572 – – 572
578 584 582 579 582

literature data

Raman shift (cm�1) mode ref.

99 E2
low(Zn) [32, 34]

333 (E2
high�E2

low) [32–34]
410 E1(TO) [32, 34]
438 E2

high(O) [7, 32–34]
570 A1(LO) [33]
579 E1(LO) [7, 32]
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detect residual elements of precursors in films obtained by
chemical methods [36, 37].

Figure 4 shows the reflection FTIR spectra of ZnO films
obtained at different substrate temperatures. Despite the
fact that the films were obtained by a chemical method, the
infrared reflectance spectra are quite “clean” for ZnO films
deposited at Ts> 573K. In the low-frequency region of 460–
475 cm�1, the reflectance minimum similar to the data in
the literature [37–39] is attributed to the Zn–Ovibrationmode
(Fig. 4b). It is important to note that the obtained spectra of the
films deposited at the whole range of substrate temperatures
contained theC–H (at around 850 cm�1) vibrationmode [39].
It should be noted, that this peak was observed in the whole
substrate temperature range and with the increase of Ts it
becomes narrower. It indicates that even at high-substrate
temperatures the residuals of relevant impurities were
remained in the films. Noteworthy, FTIR spectroscopy is a
very sensitive to the footprints of residual impurities.

The bands at 1405 and 1560 cm�1 can be ascribed to the
C–O symmetric and asymmetric stretching vibrations in the
ZnO films deposited at Ts< 573K [37]. The absence of
these modes at Ts> 573K indicates decomposition of the
precursor at the substrate surface and low probability for the
existence of the elements from acetate groups at the ZnO
surface during the pyrolysis process that promotes the
formation of single-phase zinc oxide films. Furthermore, no
other bands corresponding to O–H stretching modes were
observed. It indicates a low concentration of impurities and
relatively high-chemical purity of the studied films [40].

4 Conclusions In this work, nanocrystalline ZnO
films were deposited onto glass substrates at the substrate
temperatures from 473 to 673K. The average size of CSDs,
microstrains grades, microstress levels, and the density of
dislocations in the ZnO films were determined by means of
X-ray diffraction analysis. Moreover, the chemical compo-
sition and crystal quality of the ZnO films were investigated
using Raman and FTIR spectroscopies.

It was shown that the highest values of CSDs in ZnO
films deposited at the substrate temperatures range of
623–673K were 21–23 nm in the perpendicular directions
to the (100)–(200) planes, 17–20 nm for the (101)–(202)
planes, and 14–63 nm for the (102)–(103) planes. When Ts
increased, the microstrains and microstress levels in the
films decreased from e�1.6� 10�5 to�0.5� 10�5 (s from
1.53 to 0.48MPa) in the perpendicular direction to the (100)
plane. The ZnO films are characterized by the low values of
dislocation density r¼ (1.3–6.1)� 1013 linesm�2.

Raman spectra of the films show two strong phonon
modes (E2

high(О) and E2
low(Zn)). In addition, (E2

high�
E2

low), E1(TO), A1(LO), and E1(LO) phonon modes were
observed. Furthermore, the FTIR spectroscopy showed
the bands related to Zn–O and C–H stretching modes for the
entire substrate temperature range. No C–O vibration modes
were observed in the spectra of the ZnO films deposited at
Ts> 573K. It clearly attests to the complete decomposition
of initial solution at the substrate surface and the lack of the
acetate group elements in the high-temperatures ZnO films.

The above results show that the substrate temperature has
a great effect on the composition, substructural, and optical
properties of ZnO films using a pulsed spray pyrolysis. It can
be concluded that the temperature range of 623–673K is the
most suitable to obtain single phase ZnO films with a
relatively large CSDs, low microstrains, microstresses, and
dislocation density for applications in optoelectronic devices.
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