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1. DIVISIBILITY

In this course all numbers are integers unlesswibke specified.
Thus, in the following definitioml, n,andk are integers.

Definition 1.1

The numberd divides the numben if there existsk such that
n=d K.

Alternate terms are:

dis a divisor ofn,

d is a factor on,

nis a multiple ofd.

This relationship betweed andn is symbolized asl | n The
symbold t n means that does not dividen. The integek is called
thequotient from divisionn by d.

Note that the symbol d | n is different from thecfion symbol
d/n. It is also different from n/d because d | rither true or false,
while n/d is a rational number.

All factors of n that are unequal br n are calledproper
(nontrivial) factors; 1 andn are calledrivial factors of integen.

Theorem 1.1: Divisibility Properties
For anyn, m, d,andc the following properties hold:

1. [Jd|0.

2. if0ln=n=0.

3. 1|n.

4. (Reflexivity propertyh | n.

5. n|l=n=1lorn=-1

6. (Transitivity propertyd | nandn | m=d | m.

7. (Multiplication property)d | n = for anya//Z: d | af.

8. (Linearity property)d | nandd | m=d | afY + b/ for all

a andb.

9. (Comparison property)f d andn are positive andl | n, then
d<n.

10. (Integration property)f d | a, d | banda=b +c=d | c.



Definition 1.1
If nis divisible by 2, then we say that it @ven (or haseven
parity ). Otherwise, a number &xld (or hasodd parity).

Lemma 1.1
Recall thafja| equalsa if a > 0 and equalsa if a < 0.
1.1fd|a,then—d | aandd | —a.
2.1fd|a,thend | |a].
3. The largest positive integer that divides a moonumben is
|al.

Examples

Example 1.1

Let x andy be integers. Prove thak 2 3y is divisible by 17 if
and only if (iff) 9 + Sy is divisible by 17.
Solution

Suppose that 17 | X2 3y). Then, according tonultiplication
propertyin theorem 1.1, we get 17 | [1](2 3y)] or
17 | (26& + 39).

Further, we decompose the right side into sum lksxfs:
17 | (A& + 34y + Ox + By) = 17 | 1T(X + 2y) + (X + Hy).

Finally, according tontegration propertyin theorem 1.1, we
have 17 | (2 + 5y).

And conversely, producing the similar set of operst, we
obtain
17 [ (X +5y) = 17 | [4(X + )],
orl7 | (3&+20y) =17 | B4+ 1K+ X+ 3y) =

17 | 17(Xx +y) + 2x + 3y.

Thus we have proved that 17x|2 3y.

Example 1.2
Prove that for any integem, p, g n such that(m— p)| (mn+ pq)

is an integer(m- p)|(mg+ np) is also the integer.



Solution
Let (m-p)|(mg+np) be an integer. We can denote this in

. +
similar way: mn pq:tlmz.

It is necessary to prove thai;—IO t,OZ ort, —t,U0Z. Let
-p

us show this. We obviously obtaln.
mn+pq_ma+np_mn-q)-p(n-a) _(m-p)n-a) _ .-,

m-p m-p m-p m-p '
ma+ip _y gz,

Thereforet, —t, Z and, finally,

Example 1.3
N is a five-digit numbeN =a a.a,88,,0<a <9. It is known

that the numbeN is divisible by 41.
Prove if we shift digits of the number in a cirautaanner, then
we will get new numbers divisible by 41 too.

Solution

N =10%a, +10°a, +10°a, +10a, +4a,.

Let us shift the last digiay to the first position, as follows:
N, =10%a, +10°a, +10°a, +10a, +4a,. It is the new number.

Prove that it is multiple of 41.
Let us try to separate the numlidéput from the right side of the

expression foiN;. Multiplying by 10, we get
10N, =10°a, +10%a, +10%°a, +10%a, + 10a, .
Then add and subtract ap. It yields:
10N, =10°a, +10%a, +10%°a, +10%°a, +10a, +a, — a, .
By combining the first and last terms of expressiae obtain
the numbeN as a summand:ON, = a0(105 —1)+ N =9999%, + N .
Further, taking into account that



41N, 99999=9011111 %L— 271= 41]99999,

we come to conclusion that in the right side betims are multiples
of 41. Thus41|10N, = 41| N,

Example 1.4
Prove that30| (m® - m).
Solution
First, let us factorize 30:
30=5[6=5I[3!.

Hence it is necessary to prove tl‘ﬁtzltl5 - m) will be the multiple
of 5 and3!, simultaneously.
Secondly, we introduce the number of combinatians by k.
cko n(n-1)(n-2)r...[(n k+1)DZ
n k' "
It follows that the product ok consecutive integers divided by
k! is an integer.

Therefore, we need to represe(m5 —m) via the product of 5
consecutive integers, for such product is divisime5!=30*4. All
the more, considering term will be divisible by 38lso, we can

show that (ms—m) is the product of 3 consecutive integers and
factor 5.
Thus we have for the first case:

(7 =)= o v -2)= o ) )=
:(m—1)m(m+1)( rﬁ—4+5)=( m 3 o m])( - z)+
#S(m-1)m{me =( - () o mY(me 3+ § m ) oo

(m-2)(m-1)m(m+1)(m+2) .
ol

Z = 30| (m-2)(m-1)m(m+1)(m+2)

And finally, for the second case, we obtain

7



(m-1)m(met) () fmy)

3! 6
=6[(m-)m(m+)= 30| m- L nh m )L

This completes the proof.

PROBLEMS FORUNIT 1

Problem 1.1

Find all positive integersl such thad divides bothn® + 1 and
(n+ 1% + 1 for some intega.
Problem 1.2

N is a six-digit numberN =aa,aa,a8 ,0<a <9,4a,=5. If
we rearrange last dig#=>5 to the first place, we will geN, = 4N .
Find this numbeN.

Problem 1.3
Prove that

1. 6|n(n+1)(2n+1).
2. 30 |mr‘(m4 —n“).

Problem 1.4
Prove that

2" |(n+1)(n+2)0.0n+n)

Problem 1.5
Prove that the last digit of numbér=2% +1 is 7.



2. PRIME NUMBERS

Definition 2.1

An integerp = 2 is prime if it has only trivial divisors. An ieger
greater than or equal to 2 that is not primeoisiposite.

Note that 1 is neither prime nor composite.

Lemma 2.1
An integern = 2 is composite iff it has factoesandb such that
l<a<nandl<b<n.

Lemma 2.2
If n> 1, then there is a primgsuch thap | n

Definition 2.2
Let p be a prime. If you know thap“ |a and p“**t a, thenais
the highest power of occurrence of the priprte an integea.

Theorem 2.1: The Fundamental Theorem of Arithmetic
Every integera greater than 1 can be written uniquely in the
following form:

a= plal [pzaz Ep3a3 D"[pkak’
where p are distinct primes ang are positive integers — the highest
power of occurrence of primg to an integea.

Theorem 2.2: Euclid’s Theorem
There are infinitely many primes.

Proof.
Suppose there exist only a finite number of primeay

(O N o
Let N = mp2 - - p + 1. By the fundamental theorem of
arithmetic,N is divisible by some primp. That prime must be one of
p1, - .., R Since that list is assumed to be exhaustive. Bistseen
that N is not divisible by any of th@. This is a contradiction; it



follows that the assumption that there are onlydigimany primes
IS not true.
We shall use the following notations:

The set of divisors of an integem= p™ Og? Ogp L..Og*« is

D={p/ 0> 0.0¢* 0<sB <a, i=1,K.
The number of divisors of an integer= p™ Og5? O 0. Ogf*
equals

r(a)=(a, +1)(a, +1)0.La, +1).

Theorem 2.3
If a > 1 is composite, thea has the least prime divisgr< Jn

Example 2.1

Consider the number 97. Note th#7 <+/100= 1. The primes
less than 10 are 2, 3, 5, and 7. None of them ebvi¥, and so 97 is
prime.

Useful Facts
Bertrand’s Postulate. For every positive integer, there exists
primep such that

n< p<2n.

3. DIVISION

Let a, b be any integers. Without loss of generality by Leamm
1.1, we can assume that> 0, b > 0.

Theorem 3.1

The pair of integera, b (a > b)can be uniquely submitted with
pair of integerg, r, satisfying these two conditions:

1l.a=DbAg +r.

2.0<sr<h.

The integerr is called theremainder in division of a by b.
If r = 0, thenq is called thequotient, other wise it is called the
partial quotient.
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Corollary 3.1
The numbed divides the numben iff in division of n by d the
remainder ig = 0.

Criteria for number divisibility

Criteria for number divisibility are important imdtorization of
large integers.

To obtain criteria for divisibility, we will applythe method of
remainders. Any non-negative integer can be repteden decimal
form as follows:

N =10"a,+10""a_ , +...+ 10%°a, + 10°a, + 10a, +a,.
We don’t know digits a, ,a,_;,...,& ,& ,& ,8,, but we can analyze

remainders of the division of 10=0,1,...,n) by some numbers.

1. Criteria for divisibility of N by 4
— Divisibility by 2

Obviously, the number 18,+10"'a,,+...+108; is divisible by 2.
If ap is divisible by 2, thenN will be divisible by 2.
— Divisibility by 4=2°

Since the number 18+10"%a, +...+10%; is divisible by 4,
thenN will be divisible by 4 if 10a3+ & is divided by 4.
— Divisibility by 8=2

Number 10a,+10"%a,.+...+10%; is divisible by 8. So,if
10Pay+10ay+ &g is divisible by 8, thenN will be divisible by 8, and
SO on.
— Generalization for2

If the last k digits of the numberN are divisible by %, thenN
will be divisible by 2.

2. Criteria for divisibility of N by 3 and 9

We can rewrite numbe\ as follows:
N=999..9 + 999..9_,+ .+ 98+ §+ g+ q,+ +. a+ 3=
n n-1

11



It is evident that &1, 3N

So,if the sum of digits of the numberN is divisible by 3 or 9,
then N is divisible by 3 or 9.

3. Criteria for divisibility of N by 5¢

N =10"a,+10™'a_, +...+10%°a, +10°a, + 10a, +a,.

If the number composed of tlkelast digits of the numbeX is
divisible by %, thenN is divisible by %. The proof is the same as for
divisibility of N by &

4. Criteria for divisibility of N by 7

N =10"a, +10™a,, +...+10%a, +10%°a, +10a, +4a,.

Consider remainders of division of ten’s powers’byVe have

10: 10=17+3, the remainder is 3

10% 100=147+2, the remainder is 2

10% 1000=1427+6=1437 - 1, the remainder is 6 oL

10" 10000=1428+4, the remainder is 4

10°: 100000=14285+5, the remainder is 5

10°: 1000000=142857+1, the remainder is

We have obtained all type of division remainderséyen. If we
continue process of division, then we will get tieenainders from
considered above set.Now we can formulate criterion for
divisibility by 7.

a. Criteria for three-digit numbers

N =10C, + 10y+ag =98, + 28 + 7a; + 33 + ag= 98, + 7a; +

+ 28, + 3y +ag=7(14ap + &) + 28, + 333 + .

If 2a, + 3a; + &g is divisible by 7, thenN is divisible by 7 too.
Example 3.1

Check whether numbers 581 and 163 are divisiblé dynot.
Solution

52 + 83 + 1 = 35. It is divisible by 7, so 581 is diviklby 7
too.

1) 12 + @3 + 3 = 23. It isn't divisible by seven. Since 28shthe
remainder 2, then 163 has the same remainder.

12



b. Criteria for n-digit numbers

Note that 16 has the remainder -1 and®t@s the remainder 1.

Represent the considering number via the sum adfetdigit
numbers:

N=aag+10aaa+10 33 g+ ..~
=a,a8,+t1437aa,a— g g a+ 1428571733 8 gaa .=
143Ta.a,a, + 1428571 3,2 3+ .+ aaa- aaa+ aaa .

N7 N,

N=2a..333 338333 N= aag aag aag.

If N is divisible by 7, theiN is divisible by 7 too.

Example 3.2

Check if the numbeX=23 161 320 is divisible by 7.
Solution

No,=320 — 161 + 23 = 182. 182:7=26. S¢:23 161 320 is
divided by 7. We have 23 161 320:7 = 3 308 760.

5. Criteria for divisibility of N by 11

N =10"a, +10™'a,, +...+10%a, +10°a, +10a, +a,.
Consider the remainders of the division of ten's/eis by 11.
10: 10=011+10 =111 - 1 the remainder is 10 et
10% 100=911+1, the remainder is
10* 1000=9@ 1+10-9111 - 1 the remainder is 10 et
10% 10000=90M1+1, the remainder is

N=a,.a5a,3;8,a 8, N,=8,-a +a,-a;+...

+ -+ - o+

If N is divisible by 11, theilN will be divisible by 11 too.

Example 3.3
Check if the numberdN=23 161 320 andN=1 186 680 are
divisible by 11.

13



Solution

1)N=0-2+3-1+6-1+3-2=6. Itisn't dibie by 11.
S0,N=23 161 320 isn’t divisible too.

2)N=0-8+6-6+8-1+1=0. Itis divisible hy,
thereforeN=1 186 680 is divisible by 11 too.

6. Criteria for divisibility of N by 13

Criterion for divisibility by 13 matches the criten of
divisibility by 7.
Example 3.4

Check thatN = 3 040 232 is divisible by 13.
Solution

232 — 40 + 3 = 195. 195:13=15. Then 3 040 232 vssithle by
13.

7. Criteria for divisibility of N byd=1&k + 1 (31, 41, 61,...)

N =a,..a,a,a3a, =10A+a,.
A
Multiply N by k: kN =10kA+ka, + A—- A= A10k +1)-(A-ka, ).
Sincek isn’t divisible by 1& + 1, we see thatl will be divisible
by 10k + 1 if N, = A —kag is a multiple of 1k + 1.
This criterion can be applied until the divisikylior lack of it
become apparent.
8. Criteria for divisibility of Nbyd=1&k -1 (19, 29, 59,...)
N =a,..a,a,a,a, =10A+a,.
A
Multiply N by k:
kN = 10kA+ka, + A- A= A10k —1)+(A+ka,).
Since k isn’t divisible by 1& -1, it follows thatN will be
divisible by 1k — 1 if N, = A + kag is a multiple of 1k + 1.

This criterion can be applied until the divisikylibr lack of it
become apparent.

14



Example 3.5

Check thatN = 3 040 232 is divisible by 31.
Solution

Here, the divisor is 31, then it is necessary te tie eighth
criteria. We get

31 =103+1,k=3,A=304 0234, = 2.

If N, =A-3g, is divisible by 31, thel is divisible by 31:

1.N, =304 023 — @ = 304 017.

2.A=30401p, =7, 30401 -3 =30 380.

3.A=3038,a0=0,3 038 - ® =3 038.

4.A=303,3 = 8, 303 — B = 279.

5A=17,0=9,27-38=0.

It is clear that O is divisible by 31, $= 3 040 232 is divisible
by 31 too. 3 040 232:31 = 98072.

PROBLEMS FORUNIT 3
3.1. Check that a is divisible by m

m=35 m=39 m=55
1. | a=351645 6. |a=437931 11. | a=747615
2. | a=236215 7. | a=294177 12. | a=502205
3. | a=590835 8. | a=735813 13. | a=1256145
4. | a=236810 9. | a=294918 14. | a=503470
5. | a=564655 10.| a=703209 15. | a=1200485
m=31 m=91 m=29
16.| a=238173 21.| a=1559649 | 26.|a=394197
17.1 a=159991 22.| a=1047683 | 27.|a=264799
18.| a=400179 23.| a=2620527 | 28.|a=662331
19.1 a=160394 24.| a=1050322 | 29.|a=265466
20.| 2 =382447 25.| a=2504411 | 30.|a=632983

15




4. GREATEST COMMON DIVISOR (GCD)

Without loss of generality (see Lemma 1.1), we assume that
all factors of integers are positive.

Definition 4.1

An integer is a common divisor of others if it divides all of
them.

We denote the set of numbers that are common dsviseb

a, a, ..., an by C (ag, &, ..., a).

Example 4.1
1. The set of common divisors of 18 and 30 is
C (18, 30)={-1, 1,-2, 2,-3, 3,-6, 6}.
2. The set of common divisors of 10, 30, 100 an@l i3
C (10, 30, 100, 130) ={-1, 1,-2, 2,-5, 5,-10, 10}.

Definition 4.2

The greatest common divisor nfnonzero integera,, &, ..., a
is the largest integer from the s€t(a;, ap, ..., a,), except that
gcd(0, 0) = 0.

Denotation of the greatest common divisor for ietsg
di, dp, ...,anis

gcd @y, ..., an).

Example 4.2

For results obtained in Example 4.1, we have

1. gcd(18,30) is the largest integer from the set
C(18,30)={-1,1,-2, 2,-3, 3,-6, 6}. Then gcd (B8) = 6.

2. gcd (10, 30, 100, 130) is the largest integer fritma set
C (10, 30, 100, 130) ={-1, 1,-2, 2,-5, 5,-10, 1Then gcd (10, 30,
100, 130) = 10.

Definition 4.3
If gcd (@1, a2, ..., &) = 1, then integersy, a, ..., a, are called
coprime numbergrelative primes).

16



Definition 4.4
If the greatest common divisors of all pairs

(@,a)(,j=12,...n ) from integersay, &, .., a& are equal 1, then

a, a, ..., a, are called pairwise prime numbeiRairwise prime
numbers arecoprime numbers, but not conversely.

Example 4.3
Numbers (5, 15, 21, 31) areoprime numbers, because
gcd (5, 15, 21, 31) = 1. But gcd (5,15) #19, gcd (15,21) = & 1.
Gced (3, 7, 11, 13) =1, then numbers (3, 7, 11,&8)coprime,
and gcd (3,7) =1, gcd(3,11) =1, gcd (3,13) =1, @cdl) =1,
gced (7,13) =1, gcd (11,13) =1. Thus, the numbems @airwise
prime numbers.

Lemma 4.1

gcd@, b) = gedp,a)
Lemma 4.2

gcd@,b) = ged( [, b |
Lemma 4.3

If az 0orb#0, then gcH, b) exists and satisfies condition
0 < gcdé, b) < min{|al, b|}.

Example 4.4

It follows from considered lemmas that gcd(48, 732)
= gcd(—48, 732) = gcd(—48,-732) = gcd(48,-732). Wso know
that 0 < gcd(48, 732)< 48. If d = gcd(48, 732), then
d | 48. To findd, we just need to check all positive divisors oftd&t
also divide 732.

If two numbers have the greatest common divisor el 1,
then they have only trivial common factors.

Lemma 4.4
If g = gcdg@, b), then gcdd/g, b/g) = 1.

Examples 4.5
g =gcd(15,21) = 3, gcd(15/3, 21/3) = gcd(5,7) = 1.

17



Lemma 4.5 (Bezout's Lemma)

The greatest common divisor of two numbers is aalin
combination of those two: for all integaasandb there exist integers
sandt such that

gcd@, b) =sa+th.

5. THE EUCLIDEAN ALGORITHM

We can efficiently compute the greatest commonsdivof two
numbers.

First we simplify the problem. Since ged(b) = gcd(@|, b|)
(and gcd(0, 0) = 0), we just need to obtain a nektleo computing
the gcdé, b) of nonnegativea and b. And, since gcd, b) =
= gcdp, a), we will consider the case>b > 0.

Lemma 5.1
If a> 0, then gcdy, 0) =a.

Lemma 5.2
If a> 0, then gcd{, a) = a.

Lemma 5.3
Leta>b>0. Ifa=bqg+r, then gcd4, b) = gcdp, r).

Proof.

If we show that the two sets of common divis@(®, b) and
C(b, r) are equal, then this will suffice to prove thealhlemma,
because there will be the same greatest elemditinsets. Recall,
the sets are equal iff they possess the same elenhen us prove the
last statement.

First, suppose that there exikil C(a, b) such that |a andd | b.
Let us note that = a —bq.[Therefore, according to Theorem 1.1(10),
we make a conclusion thafr. Thus,d |b andd |r, and sal belongs
to C(b, r).

We have shown that any element @fa, b) is an element of
C(b, r), so it implies

18



C(a, b) O C(b, r).

On the other hand, let us assume that there @XisSt(b, r) such
thatd |b andd |r. Sincea =bq +r, we again apply Theorem 1.1 (10)
to show thad | a. Sod | a andd | b, and, therefored (I C(a, b).
That is, therd O C(a, b).

QED

The Euclidean algorithm uses Lemma 5.3 to comptie t
greatest common divisor of two numbers. Let us iclemsthe
algorithm.

Choosea, bl1Z such thata > b. Construct a chain of a division
with the remainders as follows:

Step la=bqp +ry, 0 <r; <b, gcdg@, b) = gcdp, ry);
Step 2b =ry[d; + 1y, 0<rp<ry, gcdp, ry) = gcdfy, r)=
= gcd@, b) = ged(s, r2);

Step 3iry =rolGp + 13, 0<rz<rp  gcdfy, r2) =gedfy, r3) =

= gcd, b) = ged(z, r3)
Stepn: rp2 =rpalng +rn, 0 <rp<rpa, gcd€nz, rn1) =
= gcdfn1, 'n) = ged@, b) = gedng, rn);
Stepn+1.: Fn1=rngn
Since there is no remainder in the last divisioa,get gcd(..1, rn) =
=rp, = gcd@ b) =rp.

One can say that for any numbersand b the last nonzero
remainder in a chain of division with the remaindassgsdé, b).

Example 5.1

Compute gcd(803, 1543,= 803,b = 154
Step 1. gcd(803, 154) = gcd(154, 33), sin@03= 15415+ 3|
a=bqtry, go=5,rp =33, 0<33<154.
Step 2: gcd(154, 33) = gcd(33, 22), sincéb54= 334+ 2.,
b= rQitro, G = 4 r,=22, 0<22<33.
Step 3: gcd(33, 22) = ged(22, 11) since 33 =221 + 11,
ri=rotptrs, g2 =1,r3=11, 0<11<22.
Step 4: gcd(22,11) =11 since 22 =11 1271303, gz = 2,r4 = 0.
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Hence gcd(803, 154) = gcd(22, 11) = 11.

Recall that Bezout’'s lemma asserts that for giaeandb, there
exist two numbers andt such that gc@( b) =s - a+t - b. We can use
Euclidean algorithm to find andt by tracing the steps of division in
reverse order.

Example 5.2
Express gcd(803, 154) as a linear combination &f &@d 154.
We will use the considered above Example 5.1.

From step 3: 11=33-22- 1,

From step 2: 22b-33 4, or 11=33-h33-4) 1=
=—b-1+33:5;

From step 1: 33a-b-5o0rll=b-1+@-b-5)- -5=
=—26b+a-5.

Hence we can express gcd(803, 154) = 11 as a linear
combination of 803 and 154 as follows below:
11 =803-5 + (- 26)-15475,t =— 26 org=a-5 +b-(— 26).

Lemma 5.4 (Generalization)
Let

H=ChthL a=cqt L. q=cq+ [=
=gcd(a, & ... 9= gedcp g .-5).

Example 5.3

Compute gcd(261, 135, 48).
Step 1: Divideap=261 anda; =135 byc= 48. We get: 261 = 48.5 +
+21,r10=21; 135=48-2 + 39;; = 39.
Step 2: Find gcd(48, 39, 21). Divide= 48 andr1;= 39 byro= 21.
We obtain 48 =21-2 + 6,0=6,39=21-1+18,, =18
Step 3: Find gcd(21, 18, 6). Dividey = 21 andr;= 18 byryo= 6.
It yields: 21 =6-3 + 3;30=3, 18 = 6-3 + (21 = 0. Zero is divided
by any numbers. Gcd(18,6) = 6.
Step 4: Find gcd(6, 3): gcd(6, 3) = 3.
Hence,gcd(261, 135, 48) = 3.
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6. LOWEST (LEAST) COMMON MULTIPLE (LCM)

Definition 6.1
An integer is a common multiple ofothers if it is divided by all
of them.

We denote byM(a;, &, ..., &) the set of numbers that are
common multiples ofy, &, ..., &. The set M is infinite.
Definition 6.2

The lowest common multiple @f nonzero integera;, &, ..., &
is the least integer from the 3é(ay, &, ..., &).
Designation of the lowest common multiple for irdeg

a, &, ..., dlislem(ay, ..., &).
Lemma 6.1

alb
L b)=——F——.
cm{ab) gcd(ab)

Proof
Letd = gcda, b), thena = a;d, andb = bhd, gcday, b)) = 1
(according to lemma 4.4M denotes any common multiple afand

b. ThenM = k@& The numberM/b is an integer, becaudd is
multiple ofb. We will get after the series of transformations

b b bd b
Since gcdas, b)) = 1, we see thak is divisible by b; and
k=b0,t,Z.

M_ka Bl Mzama=2Dl 3D 7

b b b ! d d

Hence, we can express the set of common multidlesamd b
by the formula

m=_2P 5 0z
gcd(ab)
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If t =1, then we obtain the lowest common multipleacdindb

as follows:

alb

Lem(ab)=———

ab)

ged(

. QED.

PROBLEMS FORUNIT 6

6.1. Computegcd(a,j with Euclidean algorithm andlcm(a,b)

with Lemma 6.1

1. a=1232, 2. a=1329, 3. a=1359,
b=1672 b=2136 b=8211
4. a=5427, 5. a= 5894, 6. a=12606,
b=232877 b =3437 b= 6494
7. a=29719, 8. a=162 891, 9. a=469 459,
b=76501 b=32176 b =579 203
10. a=738089, |11. a=179370199,12. a =3 327 449,
b =3 082 607 b=4345121 b=6314 153
13. a=12870, |14. a=41382, 15. a =3 640,
b =7 650 b =103 818 b =14 300
16. a=24700, |17. a=7650, 18. a =56 595,
b =33 250 b= 25245 b =82 467
19. a=35574, |20. a=25 245, 21. a=10 140,
b =192 423 b =129 591 b=92274
22. a=36372, |23. a=46 550, 24. a=1403,
b =147 220 b=37730 b=1058
25. a=213239, | 26. a=138 285, 27. a=72 348,
b =512 525 b = 356 405 b=5632
28. a=354295, | 29. a=24789, 30. a =32 893,
b =543 440 b =35 286 b=72568
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6.2. Compute gd@, b, 9 with Lemma 5.4

14

D8

A2

 a=67283 b= 122 433,
1. a=529,b=1541, c = 1817 P el
3. a=549493, b =863 489,| 4. a = 738089, b = 3082607,
c= 133125 c = 28 303 937
S. S; ﬂ%71'3b =2223, 6. a=476,b=1258 c=211
foaz sy b 8. a=572,b=5746, c = 111
9. a=19074, b=13566, |10. a=1073, b= 3683,
c=8211 c =34 481
1L i;igglg’ b= 1474, 12.a=988,b=2014,c =425
13. g; fg%‘?g’ = 7975, 14.2a=874,b=1518,c =201
15, a=2227,b=9911 116 5-1953 b=252, c = 406
c =952
17. a=2743, b = 3587, 18. a=4345, b = 6523,
c = 6963 c = 10967
19. a=7683, b = 5161, 20. a=5174, b =12 337,
c =12 909 c =13 403
21. a=10047,b=6749, |22. a=6766, b= 16 133,
c=16 881 c=17 527
23. a=11229, b=7543, |24 a=7562 b=18 031,
c =18 867 c =19 589
25. a=13593, b=9131, |26. a=9154, b= 21827,
c = 22 839 c=23713
27. a=17139,b=11513, | 28. a= 11 542, b = 27 521,
c =28 797 c = 29 899
29. a=18321,b=12307, | 30. a=12 338, b = 29 4109,

c=30783

c=31961
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7. CONTINUED FRACTIONS

Theorem 7.1. General Form
A continued fraction is an expression of the form

where a, g and b; are either rational numbers, real numbers, or
complex numbers.

If bj = 1 for alli, then the expression is called a simple continued
fraction. If the expression contaifigitely many terms, then it is
called afinite continued fraction; otherwise, it is called amfinite
continued fraction. The numbersj are called th@artial quotients.

Theorem 7.2
The continued fraction expression of a real numbdmite iff
the real number is rational.

Every rational number% can be represented by tlsemple

continued fraction as follows:

1 o_ o, 1
_ql 1_

E:q1+i:oﬁ+i: q+
b b b
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r2
o N} +—
O,

We can obtain allgg and r; by Euclidean algorithm. The
continued fraction has as many terms, as many sepsn this

algorithm.
Simple continued fraction%, ged(a b) = 1 can be written in a

compact form using ehain of partial quotients:

2-lq.q..a)

Example 7.1
. 151 . :
Represent rational numbér = EE) by a continued fraction.

Solution
Gcd(151,13) = 1.
Q :@:11+_8 = 11+1_é = 1]:|-_15 = ]_]-_I-—ll =
13 13 19 142> 1+ =
8 8 §
5
=11+ 1 =11+ 1 =
1 1
1+—— 1+
1+:—3 1+E
5 5
3
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1+
1+ 1

L
§ 1+1‘
2 2
. , . 151
The chain of partial quotients F_’;E =[ 11,1,1,1,1, 2].

Rational numbers obtained from only a limited numdieterms
in a continued fraction are callednvergents For example, in the

simple continued fraction

a_g 1
. T Y1
1
b Q, +
O +—
q s L
n-1 qn

the co nvergents are

1
51:q1; 52:q1+q_; 53: q1+ 1 peeees
2 0, +—

ol

A sequence of convergents is approximation of aomat

number.
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Convergent properties

Property 7.1

An approximatedational number lies between two neighboring
convergents closer to the right.

The method of the convergent computation
Let us denote thé"iconvergent by, =B Then,d, =q, =1 -h

Q 1 Q
1_09g09,+1_0qQ,+1_FP
q; q; 1@,+0 Q,
PZ quz + PO

We assignP, = 1, QfOThean%:(l):E:Qq Q)
5 2 12 0

ando, =q, +

For convergen®,, we have

1

Pl(%"'j"'%
5 s _ %(R%,+R)+P _ a:R+P _ P
3 .
Q(q +1J+Q %Qe + Q)+ &Q+Q Q

1 2 q3 0

For any convergend, we getd, :M:ﬂ
qi Qi—l + Qi—z Qi

Thus we have deduced the recursion formula forutaion of
the f" convergent.
The results of convergent computations can be glaxte the table.
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Table 7.1 — The results of convergent computations

1 0 1 2
a 0, a,
R 1 P=q P,=q,F +FR
Q 0 Q=1 Q, =0,Q, +Q,

J n

d; a,
P =0;P..*+Pp, ... |a=P=q,P,+P.,
Q; =q,Q,., +Q,_, e | b=Q,=09,Q,,+Q.,

Property 7.2
For any i>0, the following formula takes place:

PQ..-QPR. = (_ 1)i .
Property 7.3
For any i>1, the following formula takes place:
6i _6i—1 :ﬂ.
QQ.
Property 7.2 is used for solving the Diophantine uagion
ax+by=1.

We write down property 7.2 for the last two columaf
the table 7.1:

PQ.-QR.=(-1)", R=a Q= bthenaQ,,-bR,=(-1)".

1. Ifnis even, theraQ, -bR_, =1, alQ.,+ Hf- P,)=1.

We have got a solution to the Diophantine equation:
X=Quqs Y=-Po.

2. Ifnis odd, theraQ_, —bP,=-1, or - alQ,+ BIP,=1.

Therefore, we have obtained a solution to the Daopihe
equation:x=-Q_,, y=P_,.
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Example 7.1
Compute all convergents for the numblei%l and solve the

Diophantine equatiod51x+ 13y = 1.
Solution

We will use Example 7.1. Numb&) :% can be written as the

chain of partial quotientsl:%l: [11,1,1,1, 1, }. Construct the table.

F%:]_, Qo:O' FI: q: 11' Q: 1, 1:g:]—_l:l': 1‘,

1
P =qR+P=101+1= 12, Q= ¢,Q+ Q= D% G I
3

4

5
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i 0 1 2 3 4 5 6
q; 11 1 1 1 1 2

P |1 11 12 23 35 58 151
Q 1 1 2 3 5 13

Verify property 7.1

Number11—3 =11.615 is betweend, =11 and J, =12 closer to

d,=12, becaus¢l1.615- 1fi= 0.615| 11.615 [ 0.3.

Number1—3=11.615 is betweend, =12 and 9, =11.5 closer
to 0,=11.5, becaus¢11.615- 124 0.385 |11.635 115| O..

Number 1—31:11.615 is betweenod, =11.5 and 9, =11.667
closer tog, =11.667 , because

|11.615- 11.54 0.11% |11.635 11.667|
Number %=11.615 is betweeng, =11.667 and 9, =11.6

closer tog, =11.6, because
|11.615- 11.66H 0.052

0..

|11.625 1E6]| O..

Number 1—31:11.615 is betweenog, =11.667 and J,=11.6
closer tog, =11.6, because
|11.615- 11.66H 0.052

Numberlli?’lzll.GlS is equal to the last convergezﬁ;;t:EB :

13
Now, we can solve the Diophantine equatidflx+ 13y =1

using property 7.2.

|11.625 1E6]| O..

RQ - QR=(-1)° or a5-b58=1or alb+b{-58) = 1.
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The solution to equation is=5, y=-58.

PROBLEMS FORUNIT 7

7.1. The rational number% Is represented via the chain of partial

guotients. Compute all convergents for the numb%r, findaandb

from the table of convergents and solve a Diophaetiequation

ax+by=1.

L pelzsand | Pe[oesl | P=[oazzd
. E_[ 11245 5 %=[ 034323 6. %=[31115]
L 2=l 2129 2 =[131425] =l 0a1325]
a ° =[ 223147] " + =[ 213023] 195 % =[ 124345
13.%[ 12512311] 14 +=[ 1123511 15D - =[ 3152315]
. 2= 12512311] 17 5 =[ 131251 8 o= 2812312]
Lo %_[ 2721114 2. E-[ 3725112 1 b 2 -[ 241231

o =[ 217251
22.1

23 b 2 =[ 319113

04D 2= 2113511

. E_[ 211319113

%:[ 59311112

a
—=[ 21137113
27,07 |

a - =[ 22312312]
28. b

” + =[ 5201122

o =[ 14711212]
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8. ARITHMETIC FUNCTIONS

In this section we shall consider several importanthmetic
functions.

8.1. The floor function (The integer part function)
Every real numbex can be written uniquely as=n+a, where
ndZ and0< a <1. We calln theinteger part or thefloor of x and

denote it by X] or |_xJ; anda is called thdractional part of x and is

denoted by %}. Thus, for x O R [X] is the greatest integer not
exceeding.

The fractional part ok is commonly thought of as the part after
the decimal point, but this notion is correct ordy positive x.
We define thdractional part by

{x} = x=[¥] forxOR

Example 8.1
Find integer and fractional parts for numbers 123.0.83;
-0.01; -10.56.

Solution
1.[123.45] = 123; {123.45} = 123.45 — [123.45] 23145 -
—123 =0.45.
2.[0.83]1=0; {0.83} = 0.83 - [0.83] = 0.83 — 00=83.
3. [-0.01] =-1; {-0.01} =-0.01 — [-0.01] =-0.61-1) = 0.9.
4.[-10.56] =-11; {-10.56} = -10.56 — [-10.56] =16-56 —
—(-11) = 0.44.

An integer part function is used for prime factorization of n!
We can find the highest power of prinpeoccurring in the prime
decomposition of an integarby this function.

Example 8.2
Find the exponent of the highest power of prima 2hie prime
decomposition of the integer 13!
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Solution

13! = 12[34B67BMOMI0111213.

From this product write down the set of numberd thidl be
multiples of 2. Denote this set by:S

S ={2,4,6,8, 10, 12},

The number of members of §he cardinality|S,| of &) is 6.

This operation corresponds to the computation efitleeger part of
the numbe{%} =6.

From S write down the set of numbers that will be mulplof
2°. Denote this set by,S

S, ={4, 8, 12}. The cardinality of Eequals[;—ﬂ =3.

From S write down the set of numbers that will be muklplof
2°. Denote this set bysS

Ss={8}. The cardinality|58| is E_S’} =1.

From S write down the set of numbers that will be mulplof
2*. Denote this set by;8

13
Sie= {0} |§6|:[ﬂ =0.
The total power of prime 2 in prime factorizationl@®! is

6+3+1=10.

The integer Z is the factor of 13!, and"2does not divide it.
Hence, the exponent of the highest power of a prime p
occurring in the prime decomposition of an integen! is given by

a:{ﬂ}+ De o+ M| pk<n, p**lsn.
Pl | p? p¥
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Example 8.3
The number of positive divisors of an integer m(n), the sum

of positive divisors of an integer n &(n), the Eulers totient
function —g(n).

If the prime factorization of n > 1 is = p," [h,” 0..0p, ", then
the number of positive divisors (factors)of this number is
r(n)=7(p," o," 0.0, )= (a, +1)(a, +1)0.a, +1),  (8.4.1)
if n=p?, thenz(n)=r{p’)=(a +1);
andthe sum of positive divisors (factorspf this number is

a+1 a+l o+l
1P g P 21 g0
p, -1 p—1

olp, b, 0.0p, )= -
pa+l_1
p-1

if n=p” ,thena(n)=0(p”)=

Example 8.4
Compute the number and the sum of factors forritegger 18.

Solution

The prime factorization of 18 is 18 =32 The integer 18 has
positive divisors: 1, 2, 3, 6, 9, 18. The numbethase divisors is 6,
r(18)=6.

In the prime factorization of 18 the prime numbédraa power 1
and the prime number 3 has power 2. We can comg{d® using
formula (8.41):

r(18)=7(23)=(= (2 )= 2% .
Both results coincide.
The sum of factors ig(18) = 1+ 2+ 3+ 6+ 9 18& 3.

By formula (8.4.2), we get
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2°-13-1_,(3-1)(3" +3+1)
2-1 3-1 (3-1)
Both results are correct.

Definition 8.1

The Euler’s totient function (phi-function) for an integer n
counts the number of positive integers less than and relatively
prime to it.

Designation of the Euler’s totient function for aninteger n is

on).

Example 8.5

The integer 7 has six positive numbers less thand/relatively
prime to it: 1, 2, 3, 4, 5, 6. The integer 2 has esnch number — 1.
The integer 6 has two such numbers — 1 and 5.

=3M13=39",

o(18)=o(203%)=

8.2. Computation of a value of Euler’s function
If the number p is prime, then

Ap)=p-1; (8.7.1)
If n=p“, then
dpa): pﬂ _ pa—l — pa—l(p—l): pa(l——;j, (872)

If n=p," p," 0..0p, "™, then
dn)=dp,” 0," 0.0, )=dp.” Jelp,” 0. 1op, )=
- (plal _ I:)lal—l)(pza2 _ pzaz_l)D--[ﬁpkak _ pkak—l):
= plal_l p202—1 E]--Epkgk_l(p1 - 1)( P, _1) D"[ﬂpk _1) =

_ n(l-ij(l-ij D..[El—ij. (6.7.3)
Py P, Py

L a*t-1)=(a-1)a* +a**+..+a+1), k=1
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Example 8.6
Compute phi-function for integers 13, 25, 10, 10000.

Solutions
1) 13is prime, therefore from formula (8.7.1)
#13)=13-1=12;
2) 25 = 5 | then from formula (8.7.2)
#(25)= ¢f5?) =5 -5=5(5-1) = 20;
3) 10 = 23, then from formula (8.7.3)
A10)= ¢f25) = f2)ef5) = (2-1)(5-1) =4, they are 1, 3, 7, 9;
4) 100 = 232 then from formula (8.7.3)
#(100)=¢( 2 B) =¢( Z)¢( 8)=( 2- ¥ 8- =
=20602-9)(5 1= 104 4;
5) 1000 = 33>, then from formula (8.7.3)
#(1000 =¢( 208)=¢( 2)¢( §)=( 2~ 3( &~ §=
=2°5°[[2- ) (5~ 3= 1004 40.
Definition 8.2
r(1), o(1), and ¢(1) are defined to be 1.

Definition 8.3
We say that function f is multiplicative if

f (mxn)=f (m)xf (n) for all relatively prime positive integersm,
and n, whenf(1) = 1.

Theorem 8.1
Functions 7(n), a(n), and ¢(n) are multiplicative.
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PROBLEMS FORUNIT 8

8.1

a. Find the exponents of the highest powers of priesa and
prime factorization of an integern!

b, occurring in the

1 a=3, b=5, 5 a=2, b=13, L a=2, b=11,
"N=337! "N =271 "N =745!
2.a=2,b:7, 7.a:5, b=13, 12la=5, b=11,
N = 234! N = 234! N = 652!
3.a=2,b:11, 8.a:3, b=5, 3la=7,b:11,
N =381! N =931! N = 734!
4 a=3, b=11, 9 a=2,b=7, a=3,b=7,
"N =534! "N = 491! "N =439!
5.a=5, b=7, 1o.a::%, b=11,
N = 625! N =834!

b Calculate how many zeros the factorial ofa number n!

ends with (the number of trailing zeros)
15. N =356! 21. N =534! 27. N =399!
16. N =428! 22. N =749! 28. N =923!
17. N =295! 23. N =957! 29. N =847!
18. N = 345! 24. N =367! 30. N =537!
19. N = 650! 25. N =841!
20. N =728! 26. N =791
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8.2

Compute 7(n), o(n), and ¢(n) for an integer n. The prime

factorization of n > 1 isn=p," [p,™ [..[p, ™

| a=2F030L7 |p a=3HOLL: |3 a=3 °A70C
4 a=5'[7*19 5, a=2’B' RS |g a=2°[BB7

s a=2BFB] |g a=FO°B7Ml |9 a=5 "9

10, a=2°B' F°[BS |11, a=5[F*A3HM: |12 a=3F F° 7028
13 a=2° (B (BIAZ |14 a=2"7°(R3B: |15 a=3 AP 1902
16 a=5 PL9WI |17 a=257B1 |18 a=2° (P AFB7
19 a=FEFAFR: |pg a=FF*AFIE |21 a=3 K ¥Vl
b0 a=2°[B'[5°'41 [p3.a=2°B'[(F’M]1 |94 a=2°[5'[101
05.a=3 510 |pg a=2 (377197 |p7 a=3 (7° 101
pg. a=2"[B3'[7° 71 |29.a=2"B'AT @1 |35 a=2°B B3
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9. MODULAR ARITHMETIC

9.1.CLASSES OFCONGRUENCE

Let us consider the example of distribution of se¢ of integers
into a finite number of classes with some relatimps among these
numbers.

Let us take the numbep=7. This number has 7 different

remainders — 0, 1, 2, 3, 4, 5, 6, and there arampbther remainders
of the division of any integers by 7. So, we camfa@ table of the
distribution of integers into the classes corresjiog to such seven
remainders.

Table 9.1 — The distribution of integers into classby remainders
from division by 7

Remainders.
. 0 1 2 3 4 5 6
Quotient!
1 7 7+1=8| 7+2=9 7+3=10 7+4=11 7+5=12 7+6513
2 14 | 15 16 17 18 19 20
3 21 | 22 23 24 25 26 27
20 140| 141 142 143 144 145 146
33 231| 232 233 234 235 236 237
q 79 | 79+l | 7q+2 | 7q9+3 79+4 79+5 79+6

This table has 7 columns with integers and infimtembers of
rows because infinite set of integers is distridutgo 7 classes.

All numbers from class 0 have common property sihel they
are divided by 7. We can denote this class as Tignunbers of
class 1 have the remainder r=1 from division byd we denote this
class as 7g+1. We denote classes 2, 3, 4,5, a2779 + 3, 7q +
+4,7q + 5, 7q + 6 respectively.
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In number theory the devisor 7 is calledodulus, and all
numbers of one class are calleshgruent modulo 7.We say that
141 is congruent to 15 modulo 7 because these msnalve in the

same class 7q + 1. We denote this factldd¢= 15§ mod 7.

Numbers of different classes are not congruent moda 7.
233 is not congruent to 25 modulo 7 because 23#hpslto the class
79 + 2 and 25 belongs to the class 7q + 4. We detiig fact as
233¢ 29 mod J.

Generalizing the consideration, we can make a osra.

For every integem calledmodulus, we can consider the set of
m remainders{0, 1, 2, ...,r;, ..., m-1}. Each remainder; of this set
forms a correspondingpumber class This class is denoted as
mxg+r,, q0Z, ri < m. All numbers from the classnxq+r are

congruent to each other modulo m. This fact is denoted as
OabOmg+r, = a=h(modm). Another notation isa = b+maq.

Definition 9.1.1
The relationship a = b(mod m) is called congruence modulon.

Numbers fromdifferent classes are not congruent moduto
This fact is denoted as

Dadmg+r, & ObOmt+r,,i # j, a#b(modm).

Definition 9.1.2
Each number of the class is callesidue with respect to other
numbers from the same class

Definition 9.1.3

A system that includesne residue from each classs called
a complete residue system modulm. In particular, {0, 1, . . .,
m-1} is the set of the least nonnegative residue moduio.

For example,the set onumbers {7, 15, 142, 234, 144, 26, 13}
forms a complete residue system modulo 7, becdeseesidue of
each classes belongs to it. The set of the leastagative residue
modulo 6 is the set {0, 1, 2, 3, 4, 5, 6}.
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Each residue of the classix q is congruent to 0 modulo m
mq=0(modm), g0 Z . If we add/ subtract a residue of this class to

(from) any side of an arbitrary congruence moduaip then the
congruence will not be altered.
For example,let us consider a congruence modulo 7. We have:

41=6(mod7), 41=6-7(mod7)= 41=-1(mod7).
Really, 41 = B + 6, 1807@, then 7%=0(mod7) and
41=6(mod7). On the other hand,
41 = 78 — 1, 807MG, then7 6 = 0(mod7) and 41= -1(mod7).
Thus,6 =6 -7 = -1(mod7).

This example shows that we can consider a negadsidue as
well as a nonnegative one.

Lemma 9.1.1

For any a, b >0 and positivam, the following statement holds.
If a=b(modm), then a=b-m(modm) and a-m=b(modm).

Let us consider the complete system of the leashegative
residue modulaon. This system can be separated into two subsystems
as specified out below.

1. First, if m is odd, then the residues O, 1, 2, mT—l will

remain the same, and from the residu@sz_—1+1, m-1

+2...,

m-1 we will subtract modulan. As a result, we will obtain the
m-1
}.

system of the residud®, £1, £ 2, ..., +

2. Secondly, ifm is even,then the residues 0, 1, 2, g will

m-1

not be altered, and from the residu%s—lr 1, +2..., m—-1 we
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will subtract modulusn. Thus, we will obtain the system of residues

m m
—+1,...,-2,-1,01,2,.— .
{ 2 2

Definition 9.1.4

The complete system of the least nonnegative resicwodulam
can be split into two subsystemhere arem residues in both
subsystems. Each subsystem is calleel least absolute residue
system modulom.

Example 9.1.1
Construct the least absolute residue system: 1) maobb 7;
2) modulo 8.

Solution
1) The least nonnegative residues modulo 7 {&4,2,3,4,5p.

7—;1:3, so the least absolute residue system modulo &

{0,1,2,34 7,5 7,6 }i=(0,+1,+2,+3} or {-3,-2,-1,0,1,2B;
2) The least nonnegative residues modulo 8{&x&,2,3,4,5,6}.

§= , SO the least absolute residue system modulo 8s

{0,1,2,3,45 8,6 87 }={-3-2-1,0123}\.

Properties of congruences modulm

Theorem 9.1.1
For any integers a, b, ¢, and m > 0 the followingperties hold:
1. Reflexivity propertya = a(modm)

This property means that any integer can be unyqegresented
as a=mlg+r, 0<sr<m for arbitrary positive divisor m

(Theorem 3.1).
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2. Symmetry properta = b(modm) = b= g modn)

This property signifies that both numbers have #@me
remainder in division byn.

For example: 24=3§ modj= 3& 2@ mod). Indeed,

24=3[7+3and38=5[7+3. So, both numbers have the same
remainder 3 in division by 7.

3. Transitivity property

If a=b(modm) andb=¢(modm), thena = ¢(modm).

For transitivity, assume thatleaves the same remainderbasn
division by m, and thatb leaves the same remainder@srhe all
three leave the same remainder as each other,napdriiculara
leaves the same remaindercas

For example: 24= 38 mod7 ,3& 150 modz 24 160 moy.

The all three have the same remainder of 3 on dmsby 7.
Actually, 24=3[7+ 3, 38=5[7+3, 150=21[7+3.

Theorem 9.1.2
For any a, b0Z and positive m>1, mOZ, a=hb(modm) iff

m|(a-h).

Proof
Clearly if m|(a-b), then
a-b=mg=a=b+mo= a=h(modm).
On the other hand,
a=b(modm)=a=b+mt=a-b=mt= m|(a-b).
So, thedifference of any two numbers from the same class
belongs to class 0,
a—b=0(modm).

Theorem 9.1.3
If a=b(modm) andc = d(modm), then
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1) a+c=b+d(modm) and a-c=b-d(modm) — algebraic
addition.

Consequencea +c¢ =b(modm) = a=b-c(modm);

2) ac=bd(modm) —multiplication;

3) a" =b"(modm) for all n>1 —powering;

4) Dk JZ ka=kb{modm) —multiplication by number;

5) Oa,b,a,h, kO Z ged m K= 1

a=k[a, b= kdy: a fmod m= a= f mod I;

6) If a =b(modm), i =1n and x=y(modm), then

Zn:aw_ix”‘izzn:bn_iy”’i(modm) for all polynomials with
i=0 i=0

integer coefficients.
Proof

1) a=b(modm) implies thata=mlt+b, t0Z; c=d(modm)
means that =mig+d, qUZ.

The addition of both equations produces

a+tc=mi+b+m@+d=mt+q)+b+d;

t+q=s0Z; ms=0(modm)= a+c=b+d(modm).

Similarly, if we add two congruences such thatc =b(modm),
and - ¢ = -¢(modm), then we will get

a=b-c(modm).

2) a=b(modm) means thata=mit+b, t0Z; c=d(modm)
signifies thatc=mlq+d, qUZ. Product of both equations yields

alt=(mt+B( mg- J= mtmg mtd bmg I
=m(mtg+ td+ bg+ bd
mtq+td +bg = s0Z; ms= 0(modm) = ac = bd(modm).

3) a"=b"(modm) is got by successive multiplication of
congruences by themselves. Hence, property (8psed true.
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4) aEb(modm) = a=b+mq, we multiply the last expression
by k:

ka=kb+mka, kq=0, 0Z = ka=kb+mq = ka=kb(modm).

5) a=k[h, b= kh: a= fmod M=
—ka =kh(modn) or ka= kbt m. According to Integration
propertyin Theorem 1.2, we can writk|mg. Since gcd(mk)=1, it
follows that k|q, q=kgq,. So, we haveka, =kb, + mkq . Finally, by
dividing the last expression byk ~we will get
a, =b, + mq = a, =b,(modm).

6) Let us consider a congruence

ax"+a x"'+.+ax+a, = Zan x"" =0(modm).

Taking into account thag = b(modm) ,i=Lnand = ¥ modm
ora, =b +mq; x=y+mt, we obtain

Zn:an-ixn_i Z_Zn‘,(b]—i +mq‘|—i)){1_i :i‘; ol X"+ mg .=
Z '(modm).

Further, the right side of obtained congruencelmarewritten as
follows:

b =Y by (yeme) =

i=0
=Z:‘bn_i ( y”‘i + Cn_ilyn—i—lmt+ L+ Cn-in-i-ly(mt)n—i—l +( mt)n_i) .

By denoting

1. ,n-i-

q Cnly

b, (y+mt)” an (y+mg= Zp gy +z pmg=

i=0

Tt AC, T ymT A e m T OZ, we have
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=3 by ) ha.

i=0

By introducingq, = an_iq 0Z, we get
i=0

b X =Yy ey hazY b ' me

Zn: b,y (modm).

As a result, we deducgn: a X" = Zn:bn_i y"*(modm).
i=0

i=0

Examples 9.1.2

Take two congruenced=52(mod7) and 5 = 40(mod7).
1) The sum of3=52(mod7) and 5=40(mod7) is 8=92(mod7).
The obtained congruence is true becau8e1(mod7) and
92=1(mod7). The difference between them is2=12(mod7).
Such congruence is correct, because2=5(mod7) and
12=5(mod7).
2) The product of given congruenceslis= 208((mod7). One can
see that 15=1(mod7) and 2080=7 297+ 1=>2080=1(mod7).

Hence, this congruence is correct.
3) Raise the first congruence to the second power:

(3=52( modj)2:> 3= 55 modyr> 8 2764 mod-
9=2(mod7 ; 2704 7386 2 2704= A mod].
So, if 3=52( mod} is true, ther8’ =52 ( mod 7 is indeed true.
4) Multiply through the congruencg=52( mod 3 by 10. We obtain
30=52(Q modJ; 30= 704+ 2; 520= 7074+ - Both numbers 30
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and 520 leave the same remainder 2 when divided;blgence
3010= 521¢ modY is true.
5) Take the congruenceSE40(mod7). Both integers of this

congruence are divided by 5. The greatest commasadiof 5 and 7
is 1. Divide the congruence by 5: 5/5=1; 40/5=8e Tdongruence
1=8(mod7) is correct.

6) Find the remainder of the division348° by 13 without
calculator.

Solution
To solve this problem means to find the least pasitesidue of

the residue class modulo 13 with the representdtBa4s®
1348=13M103+9= 1348=9(mod13); 9<13; gcd(913)=1. The
integer 9 is the least positive residue for theget 1348 modulo 13.
Then using propert§6), we can write1348° = 9%°(mod13).

Similarly, we will reduce the intege®®® taking into account
property(6).

9% = (92)° =81 = (1316 + 3)"* = 3**(mod13);

3°=32[3=(¥) 3= 820% 308 modi3

3’[B= 27[8:(13]3 ).D& G mod1)33<13.

Thus we have obtained that the remainder of thisidiv 1348°
by 13 is 3.

9.2. PROPERTIES OF CONGRUENCES THAT CHANGE M ODULUS
Theorem 9.2.1
If a=b(modm), then
1) for O aba h mm kOZ,a=kl, b=k ,m=kin : the
following congruence holds:

[Ej = [Ej(mod%j or a; =by(modm).

k k
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For example,we have
155= 85(mod35); 1?55 =31; %5 =17, %5 =7 = 31=17(mod7);
2) OkOZ ka= kb(modkm) —multiplication by number.

For example, multiply the congruence81= —2(mod11) by 5.
We obtain155=-10(mod55). This congruence holds because both
integers belong to the same residue class modulwitbbthe least

positive residue 45;
3)0d=1, dOZ: if d|m and d |a=
—d|b(if d|m and d p= d |a.

For example x=93(mod144); gcd(93144)=3= 3|x;
4) if a=b(modm),anda= K modm) ,and......,a
a=b(modm) « thena=b(modLcm( m, m,..., i) . Moreover,
if gcd(m ,m,...,m)= 1 then a=b(modmm,..m,).

For example,

a) Supposex=3(mod3 ,x= § modijl x= @ mod, we get
x=3(mod 5L 17.

b) Assume thatx=3(mod§ , x= § mod3p ,x= (3 mod2,
lcm(5,35,23 = 10, thenx =3(mod105.

9.3.FERMAT 'SLITTLE THEOREM AND EULER'S THEOREM ON THE
EXISTENCE OF THE UNIT ELEMENT MODULO m

Theorem 9.3.1. (Fermat’s little theorem) If p is@ime and a is a
coprime to p (gcd(a,p)=1), then

p|(ap —a).

This is the same as

a"* =1(modp).

Theorem 9.3.2. (Euler’'s theorem) If m > 0 and aascoprime to m
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(gcd(a,m)=1), then
a*™ =1(modm).

Example 9.3.1. Check, i167*° = 1(mod11)

Solution
Consider the following congruence:

167=2(mod11) = gcd(16711) =
Hence, withFermat's little theorem 9.3.1,
167" = 2'°(mod11),
219 = (2°F =322 =(32-301) = (- 1)° = 1(mod11).
Then 167 = 1(mod11) and Fermat’s little theorem holds.

Example 9.3.2. Find the remainder from the divisioof 23"*

by 13.

Solution
We have

23" = x(mod13); 23= -3(mod13)= 23"** = (- 3)***(mod13).
Taking into account that gcd(3,13)=1, then wkbrmat's little
theorem we can write(—3)*? =1(mod13).

Further, raising the congruence to the 120th powerget

(32 = 1%(mod13) = (- 3)** = 1(mod13).

Obviously, 1443 = 1440+3, so we have

(_3)1443 ( 3 1446- 3 144(( 3 3 35 _ 27,5

-1(mode

=-27+ 313= 14 mod1k.

Hence, the remainder from the divisi@B8"** by 13 is equal 12.

Example 9.3.3. Find the last three digits of thetéger 13™%°.

Solution
Let us rephrase this problem as folloviisid the remainder

from the division of 13"% by 1000.
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A solution to the problem will be the congruence:
13"%% = x(mod1000).

Obviously, gcd(131000=1. As 1000 is composite, then
1000= 2% [%°. Hence,Euler's theorem is correct for this number:
13199 = 1(mod1000),

#(1000) = ¢(2° 5°) = (2° - 2°|5° - 52) = 4[1.00= 400.
We havel3* =1(1000) —Euler's theorem.

The exponent 1599 is not divisible by 400, B&00= 40Q]-.
Multiplying the congruence by 13, we obtain

13" =13x(mod1000). Using property (3) in Theorem 9.1.10, we

can write down that 13°%=(13)' =1(mod1000). So,
13x51(mod1000). Then, taking into account property (1) in
Theorem 9.1, we add the modulus 1000 to the righe sf the
congruence:

13x =1004mod1000); 1001=1377; gsd(131000=1.

Finally, we divide the last congruence by 13 udimg property
(5) in Theorem 9.1:

x =77(mod1000) .

The answer for the task is that the remainder fromthe
division of 13" by 1000 equals 77, and the last three digits of
the integer 13"*° are 077.

Example 9.3.4. Find the remainder from the divisioof 348
by 21.
Solution

Let us write the congruence for the solution ofsthask:
348 = x(mod21).

It should be noted that gcd(348,21) = 3. Then, ating to the
property (3) in Theorem 9.2.1, we can conclude tigix.
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By introducing new variable x=3y, we obtain that
348 = 3y(mod21).

Let us divide the congruence by 3 using the prgpé€l) in
Theorem 9.2.1:

348%° = 3487'034& $( modIt> 3¥80 1x6y( mop
348= 7+ 5/116= 7116 4> 348 (5 mog7

prop (6)

116= 4 mod) = ( 5" 04& y( mod).

Obviously, gcd(5,7)=1, then, according toFermat’s little
theorem, we get5°® =1(mod?7).

127=6[21+1= 5% =52 = (5° f* (55,

Since 5° = 1(mod7)= (56)21 =1(mod7) (the property (3) in
Theorem  9.1.10), and 5%@=(5) (B¥= 2 mody
20=6( mod )= y= § modY.

Finally, using back substitution forx=3y, we obtain
y =6(mod7) = x = 3[6(mod21).

The answer for the task is that the remainder fromthe
division of 348" by 21 equals 18.

Example 9.3.5. Find the remainder from the divisiorof
143° +343° by 17.
Solution

Let us write the congruence for the solution of ¢neen task:
143° +343° = x(mod17).

First, according to property (1) in Theorem 9..& see that
stated above problem splits into two congruences:

143° = x,(mod17); 343° =x,(mod17).
Obviously, x=x; + X, .

So, we shall solve each problem separately andftheérnhe sum

of the solutions. Let us start with the first oidée have
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1. 143° = x,(mod17).

gcd(143,17= 1, 1B primeﬂi:'l 143= (1 mod}i
50=1603+2=143° = (143° 043 =143 (mod17),
H—/

=1mod17)
143= 1708+ 7= 14% { mod)Z= 143 ?( modl
72=49=17[2+15=173-2=7% = -2(modl17).

Thus x, =-2(mod17) is a solution to the first congruence.
2. Now, we will consider the second congruence.géte
343° = x,(mod17).

ged(343,1)= 1, 18 primeﬂifl 343= (1 mod}’
50=163+2 = 341%° = (343° 343 =343 (mod17),

=1mod17)

343=17020+ 3> 34% @ mod)Z 343 *(3 modl
F=9<17.

Thus we have obtained, = 9(mod17).

3. Finally, the total solution to the given problens
X=X, +x, =-2+9=7(mod17).

The answer for the task is that the remainder fromthe
division of 143° + 343° by 17 equals 7.
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PROBLEMS FORUNIT 9

9.1. Find the remainder from the division

1. 2. 3. 4.

6617 by 7 |2100+3100 by § 11802 by 1000 | 172001 by 1000
5, 6. 7. 8.

192402 by 100 17852 by 11 | 19671968 by 11 | 383175 by 45
9. 10. 11. 12.

109345 by 14 | 439291 by 60 | 293275 by 48 | 6617 by 7

13. 14. 15. 16.

11753 by 11 | 570+750 by 12 | 580+7100 by 13 | 550+13100 by 18
17. 15. 16. 20.

111841 by 7 |580+7100 by 13 550+13100 by 18| 122751 by 10
21. 22. 23. 24.

343741 by 26 | 1782741 by 22 | 111201 by 1000 | 71199 by 1000
25. 26. 27. 28.

3157 by 100 | 1778 by 100 | 1979 by 100 7114 by 100
29. 30.

11203 by 100 | 7332 by 100
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10. LINEAR CONGRUENCES WITH ONE UNKNOWN

10.1.CONGRUENCES OF THE FIRST ORDER. SOLVING
CONGRUENCES

Definition 10.1.1

An expression of the form

ax+b =0(modm) or ax=b(modm)
is called a congruence of the first order or admeongruence with
one unknown.

Definition 10.1.2

A solution of the first order congruence modulom is a class
of numbers x +mt tO Z such that substitution of each residue
into the congruence vyields the equivalent congrueec
b=b(modm).

As a rule, the numbex; belongs to the least absolute residue

system modulo n or the least nonnegative residsiesymodulan.
To study existence of solutions of such congruemnes,shall
consider several situations:
First, we introduce casfa,m)=1.

If x ranges over a complete residue system moduldhen the
numberax also takes on values from such system with theigion
to a sequence order. Thus, there exists only ammgruent tab .

Conclusion

If conditon (a,m)=1 takes place, then the congruence
ax=b(modm) has a unique solution.

Secondly, let us consider the congruene=b(modm) and
assume thafa,m)=d >1:

ax=b(modm)= ax=b+mt.
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If d|a, d|m=d|b, then the congruence’s terms can be
written as follows:

a=ad, b=hd, m=md, (a,m)=(b,m)=1.

Hence, according to a property of congruences, sangruence
can be divided by . Finally, we get

ax=b (modm).

From the above, it has a unique solutiare x,(modm) or
x=mt+x. On the other hand, if we consider the complestesy
of incongruent residues to modulos=dm, then we will be able to
see that there will be solutions in the interﬂmm] as follows:

X, X +m, X +2m,...x + (d —1)ml.

Here, the total number of solutions &. The solutions are

incongruent modulam and, consequently, each of them forms their
own class of residues.

Conclusion
In the case conditior{a,m)=d >1 holds, then the congruence
will possess at least one solution @l |b. There will be exactly d

solutions (d classes of solutions). The first of them could be
obtained from the given congruence divided byd, the rest are
calculated as follows:

X, =% My, X = % +(d =1)m.

A linear congruence can be solved by several method

10.1.1 APPLICATION OF CONGRUENCE’S PROPERTIES

Examples
a) Solve the congruencésx = 25mod17).

Solution
First, let us consider gcd of 15 and 17. Sifft6,17) = 1, then
the congruence possesses a unique solution. Funieg properties
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of congruence, we can simplify it. Here, both 25 ab have
common multiplier 5 that is coprime to modulo 17ende, by
applying the properties of congruence, we can diaduation by 5:
3x=5(modl7). The number 5 corresponds to the least absolute
residue — 12, which is multiple of 3. Finely, wencal off equation
3x=-12modl7) by 3, this yields: x=-4(mod17. Thus, the

congruence has a unique solution from the leasblates residue
system modulo 17 or from the least nonnegativeduesisystem
modulo 17:x=-4+17=13.

b) Solve the congruencEx = 35 mod 55.
Solution

We get(10,59 = 5> 1,5|3.

Hence, the congruence has just five solutions.

Then cancellation byl =5 produces

2x=7(mod1).

Taking into accounf2,11) = 1, we can make a conclusion that
such congruence possesses a unique solution
2x=7+11 modl)= 2= 1B mod}t> x= (9 mod).

In the same way, the given congrueridx = 35( mod 55 will
have five solutions of the obtained above formadies:

X, =9(mod59 , x = 9 10% 1B modj5

X, =9+11P= 31 mod 5},

X, =9+11B= 44 mod5p x, = 9 114 §3 modf.

If we again add extra modulus 11, then we will get
X =9+5011= 64= § mod 5.

Thus solutionsx,, X, X,, X;, X, are incongruent modulo 55 and
X = %, (mod 55 .
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Finely, we have obtained five incongruent clasdeat tare
solutions of given congruence. In a general foratyteon may be
written as follows:

x=9+11(mod55 , t=[ 0,.d- |&[ 0,..].
c) Solve the congruenckx = 33 mod 55.

Solution
We obtain that{10,55 = 5> 1 but 33 is not multiple of 5, thus
the congruence has no solutions.

10.1.2 APPLICATION OF CONVERGENTS

Consider the casax=b(modm), (a,m)=1.
Let us expand the given below ratio into contintradtion

1

+

On
We shall get a set of partial quotienfsaq,,...,q, . According to a

well-known scheme, we will built continued fractsor, —i Let
us consider the last two terms from the set:
P P
O, = , 0, =—
Q_l Q
It follows from properties of continued fractionshat
PQ._-Q.P.,=(-1)". Hence,mQ_ -aP_ =(-1)". SinceQ,, is

an integer, we may suppose that) _, is a modular period which

m_|3

can be truncated. This leads & _, = (-1)"" modm). Multiplying
both parts of the expression by numket)'b, we obtain
a(-1)""bP,_, =b(modm).
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Thus the solution of the congruence will be
x = (-1)"P_b(modm).
Example

Solve the congruenc256x =179mod337).

Solution
We have
(256337)=1.
Therefore, the congruence possesses a uniqueosolltet us

expand fractiong—‘zz into continued one as follows:

337 81 256 13

—=1+—, g =1 —=3+—=,0,=3
256 256 % 81 81(:|2
81 3 13 1
—=6+—, ¢, =6; —=4+—-,0,= 4
13 13 b 3 3 &
3
1 = 3, g; = 3.
Form the table.
i 0 1 2 3 4 5
a 1 3 6 4 3
P |1 1 4 25 104 337
Q 1 3 19 79 256

It follows from the obtained above data that
n=5 P, =P =104, b= 17%
104179 _ 81

5b .
337 337

Thus the solution is = 81(mod337).

= x=(-1)*104174 mod 33y ;
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10.2.MULTIPLICATIVE INVERSE

Definition 10.2.1
If & is a solution of the congruencex=1(modm), then a’ is
called a (multiplicative) inverse ofa modulo m, and we say that

a is invertible modulo m. We shall denotea’ = a™.
Since we know methods of solutions of linear coegues
involving one unknown, we may find an answer todbestion:

Does there exist any element from the complete desi system
modulo m having multiplicative inverse?

First, let us consider the congruence

ax=1(modm).

As the right side of the congruence equals 1 theogrding to a
condition of the solution’s existence, we dedagm)=1. If values

of a were elements from the least nonnegative systedulnan —
such system is the base for all class of numbénenr; obviously, the
congruence could be nonsolvable. For examptes15 a=>5.

Hence, from the system under consideration it esgary to throw
away all multiples of modulus. So, we will get tteeluced residue
system containingp(m) elements. Finally, for any element from the
reduced residue system moduio the inverse ofa will be a
solution of the congruencax =1(modm):

x = a*™*(modm).

Therefore, if the modulusn is composite, then the inverse
element exists just fahe reduced residue system modulm. Thus,
for an arbitrarya from mentioned above class the inverse is defined
by formula as follows:

a* = a*™*(modm).

However, if the modulus is a prime numbgerthenthe reduced
residue system modulop will coincide with the complete residue
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system.
We have come to a conclusion that for any elemenh the

complete residue system modulop the inverseexists and is a

unique:
a*=a"?(modp).

Using continued fractions, it will be easy to fitlte inverse as

follows:
at=(-1)""P,,.

Example

Obtain the multiplicative inverse for number=131 modulo

m=437.
Solution

Let us consider the fractie%:%. We are going to expand
m

the fraction via chain of partial quotients. Thisguces

4_37: ﬁ’ q1:3; Elz 2_43’ Q,= 2; _44£ ]__]l q3:]_;
131 131 44 44 43 4
43
T =43, q, = 42
Thus 237 = [3.2,1,43.
131
Then we build a table of convergents.
i 0 1 2 3 4
o} 3 2 1 43
P |1 3 7 10 437
Q |0 1 2 3 131 a

Using their properties, one can write the following
P, @, -P @, =(-1)" or 437(3-10[131=1.

=0(mod437)

Therefore, we come to a conclusion
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(-10)[131= 1 mod 43y.
Finely, =~ we  have  131'=-10(mod437) or
131" =427(mod437).

Answer
The multiplicative inverse ot =131 modulo m=437 equals

a* =-1C (in the absolute least residue system) and casrespto
a =427 in the least nonnegative residue system.

10.3.SYSTEM OF LINEAR CONGRUENCESWITH ONE UNKNOWN
Consider a system of congruences involving one owknwith
respect to different modulus
ax=h(modm), (a,
aZXEbz(modna), (a.m)=1 )
ax=h(modm). (3. m)=1
Let us assume thatn,m,,...,m are pairwise prime numbers such
that(m,mj):l i=1k j=1k;i#j.

Definition 10.3.1
A solution of the system of congruences with one known is

an integera that satisfies all congruences simultaneously.

First, we simplify this system. Sincéai,m):], i =1k, then
there exists the inverse a > for a such that
a™: a @ =1modm). Further, multiplying every system’s
equation by its own inverse, we obtain the equivadgstem

X=¢(modm),
XEC2 modm, ),

x=c,(modm,).
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Thus, if we solve the system (2), then we will &mr know the
solution to the system (1).

To answer the questions about the existence ancdtste of the
solution of the system (2), we introdutiee Chinese remainder
theorem:

Let m,m,,....m be pairwise coprime positive integers and let

Cys CyyeensCy be integers satisfying the inequalities
0O<c <m-1 i=1k. Then, there exists a unique integersuch
that ¢ will be the remainder on dividinga by m, i e,

o = (modm).

Proof

We shall prove the theorem by constructing a nuncbeDenote
by M the gcd of all moduli. Since they are pairwiseroop, then
M =mm,..m, . Further, we build a system of numbers as follows:

|\/|i :H:nlmm&:mmz'"m—lmﬂ"'mw i=1k.

Being pairwise coprime witim , eachM, has an inverse

M, =M, mod(m).

Kk
Let us construct the integer= z MM ¢ .
i=1
It is obvious that the solution to the system &airesidue class
that satisfies a congruence

x = a(modM ).

Indeed, let us substitute to the first congruence of the system
(2):

MM, ¢, +M,M,c, +...+ MM, "¢, =c,(modm,).

Here all terms, starting from the second one, anelel by m,,
since m is a factor of M,, i = 2k. Therefore, all of them are
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congruent to 0 modulan,. As stated aboveM,M,™ =1(modm,)
and, consequently(M,,m)=1. Finally, there will remain only
equivalent congruence = ¢,(modm,).

In the second equation, the only term incongruen® tmodulo
m, is M,M,'c,. Thus,a is the solution for the second congruence,
etc.

Clearly, the solution, according to its structusatisfies every
congruence in the system.

Conclusion
The solution to the system (2) exists and it is aass of
integers x=a+Mt, tOZ.

Consider an example for the solution of the systéth several
congruences.

Example
Solve a system of congruences

743 = 16 mod1p
59x =128 mod} .
136x=82 mod 3} .
Solution
There is the system of three congruences modutoegpnumbers.

STEP 1. Let us simplify the system. We substitute the tleas
residues of appropriate moduli for numbers in ezatongruences.

2x=3(mod13
4x=3(modg ,
x=1(mod3J .
We bring the system to the type (2):
2x=3+13 mod1}=> 2= 16 mod)gﬁzlxz (8 modp3
4x=3+5 modj= «= § mOd):_fﬁ)ilXE @ mod5 ,
x=1(mod3J .
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This yields the reduced system as follows:
x=8(mod13
x=2(mod§ ,
x=1(mod3 .
According to the Chinese remainder theorem, a isoiubd such

system exists, and it is a unique.
STEP 2.Let us consider the first congruenge8(mod13. We

can rewrite it via such equality:
X=8+13,. *

Since X is a solution for every congruences, we substitutdo
the second congruence and deduce value for unkhawn

8+13, = A modj= 18=- 6 mod)5=
=3, =-6+501 modj= 8= § modf.
Taking into account thaf3,5) = 1, we divide both parts of the
congruence by 3:
t, =3(mod3, this yieldst, =3+5t,.
Then we substitutg into formula (*); this produces
x=8+133+5t,)=8+39+13[5t, =47+13[5t,,
x=47(mod1315.

We get
X=47+13[5t,. (**)

STEP 3.Further, we substitute the obtained above exmedsr
X into the third congruence:

47+138,= { modp= 65=- 46 mod3
=-t,=-1(mod3d=t,= { modp=t,= * G.

If we replacet, by its expression in (**), we obtain
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X=47+13[51+3t,)=47+65+13[5[3t, =112+13[5[3t,.
Thus we have
x=112( mod 13151} or x=112( mod195.

Answer
x=112( mod195.

Solution check
20112= 224 1311% 3> @112 (3 modL
41112= 448= § modp ,
112= 3B7* = 112 (L mod)3 .

Solution is correct.

Remark
1. If in the system (1) there is a congruerge = b (modm)

possessing propertie@,m):d >1, d|b, then, by dividing it by
d, we get an expressio%"—xz%(mod%j and, further, we will

substitute the obtained congruence into the system.

If in the new deduced system moduli are still pa@ecoprimes,
then, according to the Chinese remainder theoramh system
possesses a unique solution. But in this case-thncongruence has

justd solutions:x=c¢ +t, %(modm), t, =0,(d -1). Therefore, it

IS necessary to considdr systems, having an appropriate solution of
congruence in the systemh position.
2. A systemof two equations

x=g(modm),

x = c,(modm,)
is solvable iff two conditions holdm,m,)=d>1 and d|c, -¢,.
Otherwise, the system has no solutions. In the caséitions are
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met and a solution exists, then it will be foundrbgdulo gcd ofm,
andm,.

3. If a system contains more than two congruer{ées 2) with
modules having gcd greater than 1, then we mustkcth® solution
step-by-step. When at least one of obtained congese is
nonsolvable, then such system is inconsistentlatfahe solution
exists, then it will be congruent modulo gcd ofrabhduli.

PROBLEMS FORUNIT 10

Problem 1
Obtain inverse for a modulo m.

1. 2. 3. 4, 5. 6.
a=142, | a=137, | a=95, a=37, a=37, a=113,
m=439 | m=932 | m=308 | m=107 | m=217 | m=311
7. 8. 9. 10. 11. 12.
a=221, | a=41, a=231, a=93, a=23, a=137,
m=367 | m=101 | m=142 | m=133 | m=691 | m=323
13. 14. 15. 16. 17. 18.
a=97, a=101, | a=103, | a=91, a=137, | a=5h9,
m=323 | m=931 | m=1031| m=323 | m=837 | m=311
19. 20. 21. 22. 23. 24.
a=97, a=113, | a=89, a=47, a=67, a=064,
m=433 | m=923 | m=323 | m=311 | m=691 | m=531
25. 26. 27. 28. 29. 30.
a=:64, a="71, a=83, a=93, a=128, | a=29,
m=743 | m=531 | m=323 | m=531 | m=1025| m=531
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Problem 2
Solve the system of congruences, simplifying isfir

913x =132Amod17),
1. 1138x = 245mod19),
457x =623 mod13).

913x = 13mod23),
2. {138x = 245mod11),
457x =623 mod17).

)
913x = 13Amod?29),
3. {138x = 248mod17),
457x =623 mod23).
)
)

253x = 429mod17),
4. 1338x = 545mod19),
579x =741(mod13).

253x = 429mod31),
5. {338x = 545mod23),
579x =741(mod19).

253x = 429mod37),
6. {338x =545mod29),
579x =741(mod23).
353x = 529mod17),

7. 1138x = 948 mod19),
279x = 241(mod13).
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353x = 529mod31),

8. {137x =945mod23),

10.

11.

12.

13.

14.

15.

279x = 241(mod17).

353« = 529mod37),
137x =9459mod17),
279x = 241(mod23).

271x = 541(mod37).

347x = 519mod31),
438x = 327(mod23),
271x = 541(mod19).

)
)
438x = 327(mod17),
271x = 541mod23).
)

547x = 219mod17),
639x = 175mod29),
371x = 341(mod37).

547x = 219mod31),
638x =145 mod23),
371x = 341(mod19).

547x = 219mod37),
638x = 149mod17),

371x = 341(mod23).

347x =519mod17),
438x = 345mod29),

347x =519mod37),
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16.

17.

18.

19.

20.

21.

22.

23.

747x =319mod17),
838x = 199mod29),
571x = 241(mod37).

747x = 319mod31),
838x = 195mod23),
571x = 241(mod19).

747x = 319mod37),
838x = 199mod17),
571x = 241(mod23).

437x =719mod17),
925x =395mod29),
771x = 225mod37).

437x =719mod31),
925x = 395mod23),
771x = 2259mod41).

437x =719mod37),
925x = 395 mod17),
771x = 225mod23).

333 =579mod17),
1025 = 495mod29),
797x = 245mod37).

333x = 579mod31),
1025x = 495 mod23),
797x = 245mod41).



24.

25.

26.

27.

28.

29.

30.

337x =525mod37),

1025x = 499mod17),

797x = 2459 mod23).

733x =571mod17),
625x = 405mod29),
707x = 295mod37).

733x =571(mod31),
625x = 409mod23),
707x = 295mod19).

733x =571mod37),
625x = 409mod17),
707x = 295mod23).

398x =171mod17),
925x = 605mod29),
507x = 399mod37).

398x = 171(mod31),
925x = 605mod19),
507x = 395mod11).

398x = 174(mod11),
925x =605 mod13),
507x = 395mod41).
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