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INTRODUCTION 

The performances of the adjustable electrical drives with asynchronous motors are dependent 

on the capability of frequency static converters to ensure a power supply close to a sinusoidal 

form.  

The converters yield non-sinusoidal currents or voltages, which determine a deformed regime 

in the motor and in the supply network. The high harmonics have negative effects on the 

functioning of the ensemble converter – motor through: the increase of currents in the chain 

winding of the motor, the increase of the power loss, the apparition of oscillating couples and the 

worsen of commutation phenomena in the power semiconductor devices. The unfavourable 

effect of the oscillating couples shows up especially at low frequencies and consists in a jerky 

movement of the rotor, even a resonance phenomenon in the mechanical transmission of the 

drive being possible [1].   

In order to eliminate these effects, the commutation program of the thyristors should be 

adjustable depending on the frequency of the fundamental of the voltage or current in the motor. 

This could be achieved by modulating the pulses in duration or width (PWM) after a sinusoidal 

function. The modulation of the pulse width is applied at frequencies f < 50 Hz and has a double 

role: the variation of amplitude of the fundamental correlated with its frequency and the 

nullifying of low frequency harmonics. In the literature [1, 4], several modulation methods are 

known: the comparison of a sinusoidal modulator signal with a high frequency triangular 

modulated signal, the sampling of the angular position of the spatial phasor of the phase 

voltages, the equality between the area sampled from the proposed sinusoidal voltage and the 

area of the pulse voltage.  

In this paper, one analyses a method for width modulation, which could be software 

implemented in the command system of the inverter. On this simulation model, the commutation 

moments of the thyristors, the width of the pulses, the waveforms and the spectral analysis of the 

inverter’s voltage are determined.  

 

MATHEMATICAL MODEL OF THE PULSES WIDTH MODULATION 

At a frequency of 50 Hz, the inverter functions in non-modulated regime and the output 

voltage u(t) has a rectangular shape. The duration of a pulse is 10 ms, and the amplitude of the 

pulse is equal to the direct voltage of the intermediate circuit. The magnitude of that voltage can 

be computed from the equality between the effective values of the nominal voltage on the charge 

and of the fundamental: 
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where: E is the voltage of the intermediate voltage; Uef l – the effective value of the fundamental of 

the inverter voltage; Unom – the effective value of the nominal voltage of the charge. 

At frequencies  f  < 50 Hz, the inverter functions in modulated regime, and the voltage has the 

shape of pulses with amplitude E and duration modulated after a sinusoidal function. In this case, 

the sinusoidal voltage proposed at the inverter terminals is: 
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Figure 1. The waveforms of the synthetic voltage and proposed voltage 

 

where A is the amplitude. 

The proposed voltage can be approximated with a synthetic voltage (synthesized from pulses) 

defined in a period T like this: 

during the first quart of period: 
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where: k = 1, 2, …m represents the number of pulses in the interval  

0 – T/4; t1 = 0 and  t2 m+1 = T/4, being the limits of the interval; 

in the second quart of period the pulses are symmetrical with respect to the moment T/4: 
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 t j + 1 =T/2 – t i , (6) 

 

 

where:  j = 2m +k, i = 2m – k +1, k = 1,2,…2m; t2 m +1 = T/4 and t4 m  + 1 = T/2,  being the limits 

of the interval: 

 in the second semi period the pulses are negative and symmetrical with respect to the moment 

T/2: 

 

 kj UUtu )(  ,    for  1 jj ttt  , (7) 

 

 t j + 1 =T/2 + t k + 1 , (8) 

 

where: j = 4m + k, k = 1, 2,  … 4m;  t4 m+1 = T/2 and t8 m+1 = T , being the limits of the interval. 

In figure 1 the voltages us(t) and u(t) are graphically presented on the interval 0 – T; the 

notations on the time axis being the indexes of the commutation moments. 

The Fourier series expansion of the synthetic voltage u(t) contains only odd harmonics in 

sinus [1]: 
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where the series coefficients are: 
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From the conditions that the fundamental equals the proposed voltage and that the first 2(m – 

1) high harmonics nullify: 
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From the relations (10) and (11) the following system of equations results: 
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with the commutations moments t2 ,  t3 , …t2 m  as unknowns. 

The non linear system of equations is solved numerically and the commutation moments from 

the interval 0 – T/4 are computed; the other commutation moments are found with relations (6) 

and (8).  

For M an imposed number of harmonics (odd and even) nullified, the synthetic voltage 

contains m = 1
4
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    pulses in the interval 0 – T/4, where [ ] represents the integral part of a 

number.  

 

SPECTRAL ANALYSIS OF THE SYNTHETIC VOLTAGE 

The effective values of the harmonics and the distortion coefficients are computed with [1]: 

 the effective value of the n
th

 harmonic: 
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the total effective value: 
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the total effective value of the harmonics: 
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the distortion coefficients: 
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RESULTS OF THE NUMERICAL SIMULATION 

For the numerical simulation of the PWM, the Matlab toolbox is used [2]. Having as brick 

element the matrix, this package offers facilities for the time – voltage vectors construction, for 

the spectral analysis of the synthetic voltage, for the graphical representation of the synthetic 

voltage and of the frequency spectrum.  

The input data are: A, E, f, m, itm, era,  )0(
2

)0(
3

)0(
2

)0( ...,, mtttt  ,  where: itm is the maximum 

number of iterations; era – the maximum allowable error,; t
(0)

 – the initial approximation of the 

time vector. The elements of the vector t
(0)

 are generated with a step of 1/(8 f m). Taking into the 

account the practical possibilities to realize the commutation moments in static frequency 

converters, the precision was limited to 0,2 ms (era = 2 e –4).  

For the numerical resolution of the non-linear system (12), the iterative method Newton – 

Raphson was used. The approximation at iteration  j + 1 has the following vectorial form: 
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where: t
(j)

 is the approximation at the j
th
 iteration; dt 

( j )
 – the solution of the linear system of equations 

deducted with the method Newton – Raphson;  j =  0, 1, 2, 3, …being the iteration counter. 

The system of equations (12) could be written: 
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The jacobian matrix of the system is: 
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where the elements of the matrix are: 
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The linear system deducted with the Newton – Raphson at j
th

 iteration, in vectorial form is: 

 

    )()()( jjj tftdtg  , (21) 

 

and on components: 
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with the unknowns   )(
1

j
ktd 

 , k = 1, 2, …2 m – 1. 

The iteration process is finished when the estimated precision of the solution is attained, evaluated at the n
th

 

iteration through the Euclidian norm of the vector dt
(n)

 : 
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or when the maximum number of iterations is attained, itmn ,where era and itm are given.  

The final solution of the non-linear system (12) is: 
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Table 1 - The results of the numerical simulation 

 
             

               

                 Input 

data 

        

 

 Output data 

A [V] 44 

f [Hz] 10 

E 55 √2  π 

Itm 10 

Era 2.e – 4 

m 1 2 3 4 5 6 7 

 

 

 

 

 

 

 

Pulses 

commutation 

moments in 0 – 

T/4 

            [ms] 

T1 0 0 0 0 0 0 0 

T2 22,7 11,7 7,9 6,0 4,9 4,1 3,5 

T3 25,0 13,3 8,7 6,5 5,1 4,3 3,7 

T4  23,9 16,0 12,1 9,7 8,1 7,1 

t5  25,0 17,3 12,9 10,2 8,5 7,3 

t6   24,2 18,2 14,6 12,2 10,6 

t7   25,0 19,3 15,3 12.8 11,1 

t8    24,4 19,6 16,3 14,3 

t9    25,0 20,4 17,0 14,9 

t10     24,5 20,5 18,4 

t11     25,0 21,2 19,2 

t12      24,6 22,5 

t13      25,0 22,8 

t14       24,7 

t15       25,0 

 

 

 

 

b1 44,00 44,00 44,00 44,00 44,00 44,00 44,00 

Uef 1 31,11 31,11 31,11 31,11 31,11 31,11 31,11 

b3 42,83 0 0 0 0 0 0 

Uef 3 30,28 0 0 0 0 0 0 



 

 

 

 

 

 

 

 

 

 

   The   

amplitude/ 

effective value 

of the               

first 25 

harmonics 

            [V] 

 

 

 

 

 

 

b5 40,54 0 0 0 0 0 0 

Uef 5 28,66 0 0 0 0 0 0 

b7 37,24 42,83 0 0 0 0 0 

Uef 7 26,33 30,29 0 0 0 0 0 

b9 33,09 41,68 0 0 0 0 0 

Uef 9 23,40 29,47 0 0 0 0 0 

b11 28,28 1,15 42,83 0 0 0 0 

Uef 11 20,00 0,81 30,29 0 0 0 0 

b13 23,04 1,13 41,68 0 0 0 0 

Uef 13 16,29 0,80 29,47 0 0 0 0 

b15 17,60 38,36 1,14 42,82 0 9 0 

Uef 15 12,44 27,13 0,81 30,28 0 0 0 

b17 12,20 36,24 0,01 41,69 0 0 0 

Uef 17 8,62 25,62 0,01 29,48 0 0 0 

b19 7,06 3,14 0 1,14 42,83 0 0 

Uef 19 5,00 2,22 0 0,80 30,29 0 0 

b21 2,39 3,05 1,14 0,01 41,68 0 0 

Uef 21 1,69 2,16 0,81 0,01 29,47 0 0 

b23 1,65 31,28 38,36 0 1,14 42,83 0 

Uef 23 1,16 22,12 27,13 0 0,80 30,29 0 

b25 4,91 28,51 36,23 0,02 0,01 41,68 0 

Uef 25 3,47 20,16 25,62 0,01 0,01 29,47 0 

Tot. Effectiv 

value [V] 
Uef.t 73,44 80,58 81,78 82,20 82,39 82,50 82,55 

Tot.eff.val.  

harm. [V] 
Uef.t.a 66,53 74,33 75,64 76,09 76,29 76,41 76,47 

The distortion 

coefficients 

kd1 2,138 2,390 2,431 2,445 2,452 2,456 2,458 

kd2 0,906 0,922 0,925 0,925 0,926 0,926 0,926 

 



Figure 2. The graphical results of the simulation for m = 1 

 

Figure 3. The graphical results of the simulation for m =4 

 



The output data of the simulation program are: the commutation moments, the amplitude and the 

effective value of the 1
st
, 2

nd
, ..25

th
 harmonics, the distortion coefficients, the graphical 

representation of the synthetic voltage and of the frequency spectrum.  

For a sinusoidal voltage with the amplitude A = 44V and frequency f = 50Hz the numerical 

results of the simulation for m = 1 – 7 pulses in the interval 0 – T/4 are presented in table 1. In 

figures 2 and 3 the synthetic voltage and the spectrum of harmonics up to order 25 are presented 

for   m= 1 and m = 4. 

At frequency  f = 10 Hz and voltage Uef l = 31.11V, the inverter functions in modulated 

regime with m = 1 – 7 pulses in the interval           0 – T/4. The model is conceived such that the 

fundamental of the synthetic voltage is identical to the proposed sinusoidal voltage, and the odd 

and even harmonics up to order 4m – 2 are null. Through simulation, one can see that the 

harmonics of order 4km  1,  k = 1, 2, 3, …, have a high amplitude (similar to the fundamental), 

the others being practically negligible, which means that a high number of harmonics are 

eliminated. By increasing the number of pulses, a better synthesis of the sinusoidal voltage is 

achieved, because the high amplitude harmonics are shifted towards high frequencies, which do 

not disturb the functioning of the asynchronous motor. 

The voltage synthesis after the PWM principle nullifies the harmonics in a domain of the 

frequency spectrum, but increases the harmonics from another domain of the spectrum, such that the 

distortion factors do not change, even if the number of pulses increases.  This is a disadvantage of the 

PWM voltage synthesis [1]. 

 

CONCLUSIONS 

The presented mathematical model of the pulse width modulation is based on the assessment of a 

harmonics content on the synthetic voltage, conforming to relations (11); this method is different 

from those listed in the literature. The results obtained through numerical simulation on the model 

with the Matlab toolbox are better than those obtained with PWM methods. 

The command program of the thyristors obtained through simulation of the presented PWM 

model could be implemented on a microprocessor.  

 

ABSTRACT 

The article presents a model of pulse width modulation based on the assessment of a certain 

harmonic content of the inverter synthetic voltage. The commutation moments of the pulses 

(with the same amplitude but with different widths) are computed in the conditions when the 

fundamental of the synthetic voltage is equal to the proposed sinusoidal voltage, and the high 

harmonics up to order 4m – 2 are null 
. 
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