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Abstract

The theory of a 2ux steady-state related to avalanche formation is presented for the simplest
model of a sand pile within the framework of the Lorenz approach. The stationary values of
sand velocity and sand pile slope are derived as functions of a control parameter (driven sand
pile slope). The additive noise of above values are introduced for building a phase diagram,
where the noise intensities determine both avalanche and non-avalanche domains, as well as
mixed one. Corresponding to the SOC regime, the last domain is crucial to a5ect of the noise
intensity of the vertical component of sand velocity and especially sand pile slope. To address
to a self-similar behavior, a fractional feedback is used as an e6cient ingredient of the modi7ed
Lorenz system. In the spirit of Edwards paradigm, an e5ective thermodynamics is introduced
to determine a distribution over an avalanche ensemble with negative temperature. Steady-state
behavior of the moving grains number, as well as non-extensive values of entropy and energy
is studied in detail. The power law distribution over the avalanche size is described within
a fractional Lorenz scheme, where the energy noise plays a crucial role. This distribution is
shown to be a solution of both fractional and nonlinear Fokker–Planck equation. As a result, we
obtain new relations between the exponent of the size distribution, fractal dimension of phase
space, characteristic exponent of multiplicative noise, number of governing equations, dynamical
exponents and non-extensivity parameter.
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1. Introduction

In recent years considerable study has been given to the theory of self-organized crit-
icality (SOC) that explains spontaneous (avalanche-type) dynamics, unlike the typical
phase transitions that occur only when a control parameter is driven to a critical value
[1,2]. A main feature of the systems displaying SOC is their self-similarity that leads
to a power-law distribution over avalanche sizes. Respectively, in most cases, SOC
models are studied by making use of the scaling-type arguments supplemented with
extensive computer simulations (see Ref. [3]). In contrast, we put forward an analytical
approach, which is able to describe both the process of a single avalanche formation
and the behavior of a whole avalanche ensemble in a phenomenological manner.
The SOC behavior appears in a vast variety of systems, such as real sand pile (en-

semble of grains of sand moving along increasingly tilted surface) [4–7], intermittency
in biological evolution [8], earthquakes and forest-7res, depinning transitions in ran-
dom medium and so on (see Ref. [9]). Among the above models, the sandpile is the
simplest and both analytically [10,11] and numerically [12–14] most widely studied.
In the analytical treatments a variety of 7eld theory approaches should be noticed.
Among them, the 7eld scheme [15], based on a nonlinear di5usion equation that has
failed to account for the main feature of self-organizing systems—the self-consistent
character of avalanche dynamics. The obvious reason is that using an one-parameter
approach does not take into account a feedback between the open subsystem and the
environment, that are related to order and control parameters, respectively (see also the
criticism in Refs. [5,6]). A much more substantial picture is given within two-parameter
approaches [5–7,16] that use both fundamental 7elds: gauge ones related to hydrody-
namical modes type of sand pile height and material 7elds as a number of moving
sand grains (avalanche size). The mean-7eld approximation shows that the self-similar
regime of the sand pile dynamics is relevant for subcritical behavior, where a char-
acteristic time for the variation of the order parameter is much larger than that of
the control parameter. Moreover, the latter follows the former adiabatically. Adiabatic
behavior of this type is inherent in the usual regime of a system evolving in course
of phase transitions [17] and jammed motion of vehicles [18], so that an adiabatic
approach will be taken as basis of our consideration.
Perfect treatment of the SOC has been achieved within three-parameter approach

based on the Reggeon 7eld theory that uses the density of active sites �a as order
parameter and the conserved 7eld of the energy density � as the control parameter
[19,20]. Along this line, the SOC regime appears as a result of competition between a
rate of the energy input h¿ 0 and a dissipation rate �. The considered system behaves
in quite a di5erent manner when the energy is 7xed, i.e., h= �=0, and total energy is
conserved, and for a driven sandpile, when h → 0+, � → 0 under the stationarity condi-
tion �¿h. The 7rst case can be reduced [19,20] to the picture of supercritical regime,
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where a non-homogeneity of the initial energy distribution results in a non-Markovian
term and space-dependent parameters. At dimensions above the critical value dc = 4,
this case is found to be identical to the simplest Landau picture with �a ∼ (�− �c) in
the active stationary state (�¿�c) and �a = 0 in the absorbing con7guration (�¡�c).
A fundamentally di5erent picture appears in the case of a driven sandpile, where due
to external input h → 0+, the energy density is no longer an independent 7eld that can
be reduced to the critical value �c. In this case, the average magnitude of the density
of active sites is equal to 〈�a〉= h=�, so that the susceptibility � ≡ 〈9�a=9h〉 turns out
to be � = �−1. As a consequence, a response function behaves as �(r) ∼ r2−de−r=�

at large distances r, where d is a space dimension, and � ∼ �−1=2 is a correlation
length that is a scale for the system size L ∼ �−1=�. It is remarkable that such a
mean-7eld-type behavior is caused solely by a stationary condition and a translational
invariance [20]. Respectively, a set of basic critical exponents governing the scaling of
avalanche formation reads [19]: � = � = � = 1, � = 2, � = 1

2 and � = 0. On the other
hand, scaling relations accompanied by the equality of the susceptibility and the mean
size of avalanche lead to the following expressions

�= 1 +
z
D
; �= 2

(
1− 1

D

)
; D =

�
�

(1)

for the exponents of the avalanche size distribution

P(s; �) = s−�P(x); x ≡ s=sc; sc ∼ �−1=� ; (2)

where a critical size sc is connected to the system size L ∼ � and a characteristic time
tc ∼ Lz as follows sc ∼ LD ∼ tD=zc (exponents D = �=� and z are fractal dimension,
and dynamical exponent related to a critical avalanche). According to Ref. [19], the
mean-7eld magnitudes of the above exponents are given by: �= 3

2 , � = 1
2 , D = 4 and

z = 2.
In accordance with the standard approach [21], we will use as the gauge, as the

material 7elds. The former are reduced to velocity components and sand pile slope
considered while studying a single avalanche formation, whereas the latter are reduced
to a number of moving sand grains at examination of a distribution over avalanche
sizes. Section 2 contains the self-consistent theory of the 2ux steady-state developed
along the 7rst direction. It enables us to treat the problem of a single avalanche for-
mation on the basis of the uni7ed analytical approach that is relevant for the case
of 7xed energy in Ref. [20]. In Section 3 we take into account additive noises of
the sand velocity components and sand pile slope. By this, an increase of the noise
intensities causes avalanche emergence even in non-driven systems, where the control
parameter noise plays a crucial role. A 2uctuational regime of this type corresponds
to the case h → 0+ [20], where a distribution of the order parameter appears in
an algebraic form with integer exponent. In order to not being restricted to such a
particular case, in Section 4 we introduce a uni7ed Lorenz system with a fractional
feedback. This assumption allows us to describe a subcritical regime of the avalanche
formation in natural manner. The above generalization puts forward basis of Section 5
devoted to consideration of avalanche ensemble. Following famous Edwards paradigm
[22,23], an e5ective scheme addressed to non-extensive thermodynamics [24] is pro-
posed to determine a time-dependent distribution over energies of moving sand grains.
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To generalize the Edwards scheme to non-stationary non-extensive systems, we use the
fractional Lorenz system, where the avalanche size plays a role of the order parame-
ter, non-extensive complexity is reduced to the conjugate 7eld and the non-conserved
energy of the moving grains is the control parameter. Within the framework of this
approach, the phase diagram is calculated to de7ne the di5erent domains of system
behavior as a function of noise intensities of the above values. As a result, we arrive
at a natural conclusion that the power-law distribution (2) inherent in the SOC regime
is caused by noise of the energy.
In Section 6 we show that this distribution is the solution of both nonlinear Fokker–

Planck equation, that appears in the description of non-extensive systems [24], and
fractional Fokker–Planck equation inherent in LNevy-type processes characterized by
a dynamical exponent z [25]. As a result, we obtain new relations between the
exponent � of the distribution (2), fractal dimension D of phase space, character-
istic exponent of multiplicative noise, a number of governing equations needed to
present self-consistent behavior in SOC regime, dynamical exponent z and Tsallis non-
extensivity parameter q.
Appendix A contains the basic properties of fractional integral and derivative, as

well as Jackson derivative.

2. Noiseless avalanche formation

Within the framework of the simplest model of a real sand pile, its surface at given
time t is de7ned by dependence y=y(t; x). The 2ow of sand can locally be described
in terms of three quantities: the horizontal and vertical components of the sand velocity,
ẋ ≡ 9x=9t, ẏ ≡ 9y=9t, and the surface slope y′ ≡ 9y=9x. The key point of our approach
is that the above degrees of freedom are assumed to be of a dissipative type, so that,
when they are not coupled, their relaxation to the steady state is governed by the
Debye-type equations:

dẋ
dt

=− ẋ
�x

; (3)

dẏ
dt

=− ẏ

�(0)y
; (4)

dy′

dt
=

y′
0 − y′

�S
; (5)

where �x, �
(0)
y and �S are the relaxation times of the velocity components and the slope,

respectively. Eqs. (3)–(5) imply that the sand rests in the stationary state, ẋ = ẏ = 0,
and the equilibrium slope y′ = y′

0 �= 0 plays the role of a control parameter.
Since the motion of a sand grain along di5erent directions is not independent of

each other, Eq. (3) should be changed by adding the term f = ẏ=�, that describes a
liquid friction force along the y-axis (� being the kinetic coe6cient). Then, we have

�x Qx =−ẋ + a−1ẏ ; (6)
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where a ≡ �=�x. Note that, owing to the di5usion equation ẏ = Dy′′ (D is a di5usion
coe6cient), the friction force seems to be driven by the curvature of the sand pile
surface

f = (D=�)y′′ : (7)

In the stationary state, when Qx = 0, the solution of Eq. (6) de7nes the tangent line
y = ax + const, so that the friction force f = �−1

x ẋ is proportional to the horizontal
component of the sand velocity. Taking into consideration the relation (7) and using
the chain rule dy′=dt= ẏ′ +y′′ẋ, Eq. (5) leads to the equation of motion for the slope

�Sẏ′ = (y′
0 − y′)− (�S=D)ẏẋ : (8)

In a similar manner, the equation for the vertical component of the velocity can be
deduced

�y Qy =−ẏ +
�y
�x
y′ẋ;

1
�y

≡ 1

�(0)y

(
1 +

y′
0

a
�(0)y

�x

)
: (9)

Note that the higher order terms are disregarded in Eq. (9) and the renormalized
relaxation time �y depending on the stationary slope y′

0 is introduced.
Eqs. (6), (8) and (9) constitute the basis for self-consistent description of the sand

2ow on the surface with the slope y′ driven by the control parameter y′
0. The distin-

guishing feature of these equations is that nonlinear terms, that enter Eqs. (8) and (9),
are of opposite signs, while Eq. (6) is linear. Physically, the latter means that on the
early stage the avalanche begins to move along the tangent y=ax+const. The negative
sign of the last term in Eq. (8) can be regarded as a manifestation of Le Chatelier
principle, i.e., since the slope’s increase results in the formation of an avalanche, the
velocity components ẋ and ẏ tend to impede the growth of the slope. The positive
feedback of ẋ and y′ on ẏ in Eq. (9) plays a fundamental role in the problem. As we
will show later, that it is precisely the reason for the self-organization that causes the
avalanche generation.
After a suitable rescaling, Eqs. (6), (8) and (9) can be rewritten in the form of the

well-known Lorenz system

u̇=−u+ v ; (10)

�v̇=−v+ uS ; (11)

�Ṡ = (S0 − S)− uv ; (12)

where u ≡ (�y=�x)1=2(�S=D)1=2ẋ, v ≡ (�y=�x)1=2(�S=D)1=2ẏ=a, and S ≡ (�y=�x)y′=a are the
dimensionless velocity components and the slope, respectively; � ≡ �y=�x, � ≡ �S=�x
and the dot now stands for the derivative with respect to the dimensionless time t=�x.
In the general case, system (10)–(12) cannot be solved analytically, but in the simplest
case, where ��1 and ��1, the vertical velocity v and the slope S can be eliminated by
making use of the adiabatic approximation that implies the neglection of the left-hand
side of Eqs. (11) and (12). As a result, the dependencies of S and v on the horizontal
velocity u are given by

S =
S0

1 + u2
; v=

S0u
1 + u2

: (13)
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Note that, under the assumption that u is within the physically meaningful range be-
tween 0 and 1, the slope S is a monotonically decreasing function of u, whereas the
velocity v increases with u (at u¿ 1 we have dv=du¡ 0 and the 2ow of the sand
becomes unstable).
Substitution of the second Eq. (13) into Eq. (10) yields the Landau–Khalatnikov

equation

u̇=−9E9u (14)

with the kinetic energy

E = 1
2u

2 − 1
2S0 ln(1 + u2) : (15)

For S0 ¡ 1, E is a monotonically increasing function of u and the only stationary
value of u equals zero, u0 = 0, so that there are no avalanches in this case. Obviously,
such steady-state relevant for absorbing con7guration studied in Ref. [20]. If the slope
S0 exceeds the critical value, Sc = 1, the kinetic energy takes its minimum with the
non-zero steady-state velocity components ue = ve = (S0 − 1)1=2 and the slope Se = 1.

The above scenario represents a supercritical regime of an avalanche formation and
is related to a second-order phase transition [16]. The latter can be easily seen from
the expansion of the kinetic energy (15) in a power series of u2�1. So the critical
exponents �, �, � are identical to those obtained within the framework of the mean-7eld
theory [19]. However, the magnitude �=1

2 is twice as little because our order parameter
(the velocity) is not reduced to the same (the number of active sites) in theory [19].
It is a drawback of the outlined approach that it fails to account for the subcritical

regime of the self-organization. That is the reason for the appearance of avalanches
and analogous to the 7rst-order phase transition rather than the second-order one. So
one has to modify the above theory by assuming that the e5ective relaxation time �x(u)
increases with the velocity u from a value �x(1+m)−1, m¿ 0 to �x [17]. The simplest
two-parameter approximation is

�x
�x(u)

= 1 +
m

1 + (u=u0)2
; (16)

where 0¡u0 ¡ 1. The expression for the kinetic energy (15) then changes by adding
the term

SE =
m
2
u20 ln

[
1 +

(
u
u0

)2]
(17)

and the stationary values of u are following:

ume = u00{1∓ [1 + u20u
−4
00 (S0 − Sc)]1=2}1=2 ;

2u200 ≡ (S0 − 1) + Scu20; Sc ≡ 1 + m : (18)

The upper sign on the right-hand side of Eq. (18) meets the value of the unstable state
um, where the kinetic energy E +SE has a maximum, the lower one corresponds to
the stable state ue. The corresponding values of the stationary slope are equal

S± =
1 + u200 ±

√
(1 + u200)2 − (1− u20)S0

1− u20
: (19)
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Fig. 1. The S0-dependencies of (a) the velocities ue, um, and (b) the equilibrium slope Se. The arrows
indicate the hysteresis loop.

The larger value S+ meets the unstable state and smoothly increases from the quantity

Sm = 1 + u0
√
m=(1− u20) (20)

at the parameter S0 = Sc0 with

Sc0 = (1− u20)S
2
m (21)

to the marginal value Sc = 1 +m at S0 = Sc. The S0-dependence of ue, um, and Se are
presented in Fig. 1. As shown in Fig. 1a, under the adiabatic condition �S��x is met
and the parameter S0 slowly increases being below Sc (S06 Sc), no avalanches can
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form. At the point S0 = Sc the velocity ue jumps upward to the value
√
2u00 and its

further smooth increase is determined by Eq. (18). If the parameter S0 then decreases,
the velocity ue continuously decreases to the point, where S0 = Sc0 and ue = u00. At
this point the velocity instantaneously falls to zero. Referring to Fig. 1b, the stationary
slope Se shows a linear increase from 0 to Sc with the parameter S0 being in the same
interval and, after the jump down to the value (1−u20)

−1 at S0=Sc, Se smoothly decays
to 1 at S0�Sc. When the parameter S0 then decreases from Sc to Sc0, the slope grows.
When the point Sc0, (21) is reached, the avalanche stops, so that the slope undergoes
the jump from Sm, (20) up to Sc0. For S0 ¡Sc0, again the parameter Se does not di5er
from S0. Note that this subcritical regime is realized, provided the parameter m, that
enters the dispersion law (16), is greater than

mmin =
u20

1− u20
: (22)

According to the picture described, the avalanche generation is characterized by the
well pronounced hysteresis, when the grains of sand initially being at rest begin to
move downhill only if the slope of the surface exceeds its limiting value Sc = 1 + m,
whereas the slope Sc0 needed to stop the avalanche is less than Sc (see Eqs. (20) and
(21)). This is the case in the limit �S=�x → 0 and the hysteresis loop shrinks with
the growth of the adiabaticity parameter � ≡ �S=�x. In addition to the smallness of �,
the adiabatic approximation implies also, that the ratio �y=�x ≡ � is small. In contrast
to the former assumption, the latter does not seem to be realistic for the considered
system, where in general �y ≈ �x. Thus, it is of interest to study to what extent the
7nite value of � could change the results.
Owing to the condition ��1, Eq. (12) is still algebraic and S can be expressed

in terms of u and v. As a result, we derive a system of two nonlinear di5erential
equations that can be studied with the phase portrait method [17]. The phase portraits
for various values of � are displayed in Fig. 2, where the node point O represents the
stationary state and the saddle point S is related to the maximum of the kinetic energy.
As is obvious from Fig. 2, independent of �, there is a universal section that attracts all
phase trajectories and its structure seems to be almost insensitive to changes in �. An
analysis of time dependencies v(t) and u(t) reveals that the velocity components slow
down appreciably in this section in comparison to the remaining parts of trajectories
that are almost rectilinear (it is not di6cult to see that this e5ect is caused by the
smallness of the parameter �). Since most of the time the system is in vicinity of this
universal section, we arrive at the conclusion that 7nite values of � qualitatively do
not a5ect the results obtained in the adiabatic approximation.

3. Noise in�uence on avalanche formation

We now focus on the a5ect of additive noises of the velocity components u, v,
and the slope S. With this aim, we should add to right-hand side of Eqs. (10)–(12)
the stochastic terms I 1=2u �, I 1=2v �, I 1=2S � (here the noise intensities Iu, Iv, IS are mea-
sured in units (�x=�y)(D=�S), a2(�x=�y)(D=�S), a2(�x=�y), correspondingly, and �(t) is
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Fig. 2. Phase portraits in the v−u plane at m=1, u0 =0:1, S0 =1:25Sc: (a) �=10−2; (b) �=1; (c) �=102.

the �-correlated stochastic function) [26]. Then, within the adiabatic approximation,
Eqs. (11) and (12) are reduced to the time-dependencies

v(t) = Tv+ ṽ�(t); S(t) = TS + S̃�(t) ; (23)

Tv ≡ S0ud(u); ṽ ≡
√
Iv + ISu2 d(u) ;

TS ≡ S0d(u); S̃ ≡
√
IS + Ivu2 d(u); d(u) ≡ (1 + u2)−1 : (24)

Here, deterministic components are reduced to Eqs. (13), whereas 2uctuational ones
follow from the known property of additivity of variance of independent Gaussian
random quantities [26]. Thus, using the slaving principle inherent in synergetics [27]
transforms noises of both vertical velocity component v and slope S, which are adiabatic
initially, to multiplicative form. As a result, a combination of Eqs. (10), (23) and (24)
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leads to the Langevin equation

u̇= f(u) +
√

I(u)�(t); f ≡ −9E9u ; (25)

where the force f is related to the energy E determined by Eq. (15) and an expression
for the e5ective noise intensity

I(u) ≡ Iu + (Iv + ISu2)d2(u) (26)

is obtained in accordance with above mentioned property of noise variance additivity.
In order to avoid mistakes, one should notice that a direct insertion of Eqs. (23), (24)
into (10) results in the appearance of a stochastic addition[

I 1=2u + (I 1=2v + I 1=2S u)d(u)
]
�(t) ; (27)

whose squared amplitude is quite di5erent from the e5ective noise intensity (26). More-
over, in contrast to expressions (24), a direct use of the adiabatic approximation in
Eqs. (11) and (12) reduces the 2uctuational additions in Eqs. (23) to the forms: ṽ ≡
(I 1=2v + I 1=2S u)d(u), S̃ ≡ (I 1=2S − I 1=2v u)d(u). The latter is obviously erroneous since the
e5ective noise of the slope S̃ disappears entirely for the horizontal velocity u=

√
IS=Iv.

The reason for such a contradiction is that the Langevin equation does not permit the
usage of usual analysis methods (see Ref. [26]).
To continue in the usual way, let us write the Fokker–Planck equation related to

Langevin Eq. (25):

9P(u; t)
9t =

9
9u

{
−f(u)P(u; t) +

9
9u [I(u)P(u; t)]

}
: (28)

At steady state, that will be the only case we consider, the probability distribution
P(u; t) becomes a time-independent function P(u) and under the usual condition, that
the expression in braces of the right-hand side of Eq. (28) is equal to zero, this leads
to a stationary distribution

P(u) = Z−1 exp{−U (u)} ; (29)

where Z is a normalization constant. The e5ective energy

U (u) = ln I(u)−
∫ u

0

f(u′)
I(u′)

du′; f ≡ −9E9u ; (30)

is determined by the bare energy E, Eq. (15) and the noise intensity I(u), Eq. (26)
[28]. Combining these expressions, we can 7nd the explicit form of U (u), which is
too cumbersome to be reproduced here. The equation which de7nes the locations of
the maxima of the distribution function P(u)

x3 − S0x2 − 2ISx + 4(IS − Iv) = 0; x ≡ 1 + u2 ; (31)

is much simpler. According to Eq. (31), maxima are insensitive to changes in the
intensity of the noise Iu of the velocity component u, but they are determined by the
value S0 of the sand pile slope and the intensities Iv, IS of the noises of the vertical
velocity component v and the slope S, which acquire the multiplicative character in
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Eq. (26). Hence, for simplicity Iu can be set equal to 0 and Eqs. (15), (30) and (26)
give the following expression for the e5ective energy:

U (u) =
1
2

[
u4

2
+ (2− S0 − i)u2 + (1− i)(1− S0 − i) ln(i + u2)

]

+ IS ln
[
g2S(u) + ig2v(u)

]
; i ≡ Iv=IS : (32)

According to Eq. (31), the e5ective energy (32) has a minimum at u=0 if the driven
slope S0 does not exceed the critical level

Sc = 1 + 2IS − 4Iv ; (33)

whose value increases at increasing intensity of the noise of the sand pile slope, but
decreases with one of the vertical velocities. Here, sand grains do not move. In the
simple case Iv = 0, the avalanche creation is related to solutions

u2± =
1
2

[
S0 − 3 +

√
(3− S0)2 + 4(2S0 − 3 + 2IS)

]
(34)

which are obtained from Eq. (31) after elimination of the root u2 = 0. The magnitude
of this solution has its minimum

u2c =
1
2

[
(S0 − 3)−

√
(S0 + 7)(S0 − 1)

]
(35)

on the line de7ned by expression (33) with Iv=0. At S0 ¡ 4
3 the roots ±uc are complex,

starting from S0= 4
3 they become zero and at S0 ¿ 4

3 one has real magnitudes u+=−u−.
In this way, the tricritical point

S0 = 4=3; IS = 1=6 (36)

addresses to the appearance of roots u± �= 0 of Eq. (31) that means avalanche creation.
If condition (33) is satis7ed, the root u=0 corresponds to the minimum of the e5ective
energy (32) at S0 ¡ 4

3 , whereas at S0 ¿ 4
3 this root corresponds to the maximum, and

the roots u±—to symmetrical minima.
Now, we 7nd another condition for the stability of the roots u±. Setting the dis-

criminant of Eq. (31) equal to zero, we get the equations

IS = 0; I 2S − IS

[
27
2

(
1− S0

3

)
− S2

0

8

]
+

S3
0

2
= 0 (37)

the second of which gives

2IS =
[
27
2

(
1− S0

3

)
− S2

0

8

]
±
{[

27
2

(
1− S0

3

)
− S2

0

8

]2
− 2S3

0

}1=2

: (38)

This equation de7nes a bell-shaped curve S0(IS), which intersects the horizontal axis
at the points IS = 0 and IS = 27=2, and has a maximum S0 = 2 at

IS = 2 : (39)

It is easy to see that for Iv = 0 this line touches the curve (33) at point (36).
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Fig. 3. Phase diagrams at 7xed values Iv: (a) Iv = 0; (b) Iv = 1; (c) Iv = 2. Curves 1 and 2 de7ne the
boundary of stability of avalanche (A) and non-avalanche (N) phases.

Let us now consider the more general case of two multiplicative noises Iv, IS �= 0.
Introducing the parameter a=1− i, i ≡ Iv=IS and the renormalized variables Ĩ ≡ IS=a2,
S̃0 ≡ S0=a, ũ 2 =(1+u2)=a−1, at i¡ 1 we reproduce all of the above expressions with
the generalized energy Ũ =Ĩ in Eq. (32). Thus, the action of the noise of the vertical
velocity component v is reduced to the renormalization of the extremum value of the
horizontal one u by the quantity (a−1 − 1)1=2. As a result, the region of divergence
ũ ≈ 0 becomes inaccessible.

The condition of extremum of the generalized energy (32) splits into two equations,
one of which is simply u= 0, and the other one is given by Eq. (31). As mentioned
above, the analysis of the latter indicates that the line of existence of the zero solution
is de7ned by expression (33). The tricritical point has the coordinates

S0 = 4
3 (1− Iv); IS = 1

6(1 + 8Iv) : (40)

The phase diagram for the 7xed intensities Iv is shown in Fig. 3. Here the curves 1, 2
de7ne the thresholds of absolute loss of stability for the 2uxless and 2ux steady-states,
respectively. Above line 1 the system is in a stable 2ux state, below curve 2 it is in
the 2uxless one, and between these lines the two-phase domain is realized. For Iv ¡ 1

4
the situation is generally the same as in the simple case Iv=0 (see Fig. 3a). At Iv ¿ 1

4
even for small intensities IS of the slope noise (Fig. 3b) the avalanche formation is
possible. According to Eq. (40), the tricritical point lies on the IS -axis at Iv = 1, and
if the noise intensity Iv is larger than the critical value Iv = 2, the stable 2uxless state
disappears (see Fig. 3c).
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To conclude, the above consideration shows that the dissipative dynamic of grain
2ow in a real sand pile can be represented within the framework of the Lorenz
model, where the horizontal and vertical velocity components play the role of the order
parameter and its conjugate 7eld, respectively, and the sand pile slope is the control
parameter. In Section 2, the noiseless case is examined to show that an avalanche is
created if the externally driven sand pile slope y′

0 is larger than the critical magnitude

y′
c = (�x�y)−1=2� : (41)

In this sense, the systems with small values of the kinetic coe6cient � and large
relaxation times �x, �y of the velocity components are preferred. However, the sand
2ow appears as usual phase transition because the avalanche creation in the noiseless
case is only possible due to the externally driven growth of the sand pile slope.
A consideration of the additive noises of the above degrees of freedom shows that

the stochasticity in2uence is non-essential for the horizontal velocity component and
that it is crucial for both the vertical velocity component and the sand pile slope.
The boundary of the domain of avalanche formation is set by the equality for the
dimensionless noise intensities

IS =−1
2
+ 2Iv ; (42)

following from Eq. (31) at the conditions x = 1 (u = 0), and S0 = 0. According to
Eq. (42), in absence of the sand pile slope noise the avalanche is created if the intensity
of the vertical velocity component exceeds the value

Iv0 =
1
4

D�2

�x�y�S
; (43)

corresponding to the point O in Fig. 4. An increase of both the vertical velocity and
the sand pile slope noises causes an avalanche formation if its intensities are bound by
condition (42). The domain of the mixed state appears with further increase of these
intensities above magnitudes

Iv1 =
D�2

�x�y�S
; IS1 =

3
2

�2

�x�y
(44)

at the point T in Fig. 4. If the noise intensity of the vertical velocity exceeds the larger
value

Iv2 = 2
D�2

�x�y�S
; (45)

corresponding to the sand pile slope noise IS2 = 6�2=�x�y (the point C in Fig. 4), the
2uxless steady-state disappears at all.
Physically, we have to take into consideration that the SOC regime is not relevant

to a 2ux-type avalanche state itself, but rather to an intermittent regime of avalanche
formation corresponding to the domains in the phase diagrams in Figs. 3 and 4, where
a mixture of both phases A and N (avalanche and non-avalanche) exists. According
to the above analysis, such an intermittent behavior may be realized within the region
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Fig. 4. Phase diagram for the system with S0 = 0 and Is, Iv �= 0 (D is the disordering point; T is the
tricritical point; C is the critical point).

located above line (42) and outside the curve that is determined by

Iv = IS

[
1−

(
2
27

)1=2√
IS

]
(46)

with the dimensionless values Iv, IS . The corresponding phase diagram is depicted in
Fig. 4 to show a very non-trivial form (especially, within the domain Iv16 Iv6 Iv2).

4. Generalizing self-similarity

To proceed the consideration of the system behavior, let us examine the explicit
form of the probability (29) determined, for di5erent regimes, by the e5ective energy
(30). In the case Iu; IS�Iv, we obtain a distribution

P(u) ≈ I−1
v (1 + u2)2 exp

{
I−1
v

∫
f(u)(1 + u2)2du

}
;

f(u) ≡ −u+ S0u=(1 + u2) (47)

that di5ers from the power dependence inherent in self-similar systems. Contrary, at in-
termittent behavior, when Iu; Iv�IS , the supercritical values of the slope noise intensity
IS cause the following distribution form

P(u) ≈ I−1
S

(
1 + u2

u

)2
exp

{
I−1
S

∫
f(u)(1 + u2)2

u2
du
}

∼ u−2 : (48)
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Thus, the case Iu, Iv�IS addresses to the power-law distribution that is relevant to
self-similar behavior. However, in general case, the obtained exponent should not be
reduced to the integer 2 but to fractional one.
To get rid o5 such a restriction, the multiplier u in the nonlinear terms of

Eqs. (10)–(12) is supposed to be replaced by power term ua, with an exponent
06 a6 1. Taking into account the stochastic additions, one obtains the basic equations
in dimensionless form

u̇=−u+ v+
√
Iu�(t) ;

�v̇=−v+ uaS +
√

Iv�(t) ;

�Ṡ = (S0 − S)− uav+
√

IS�(t) : (49)

It can be seen that the agreement of the Lorenz self-organization scheme with SOC
conception, related to self-similar systems is achieved, if one assumes that both pos-
itive and negative feedbacks are fractional. Within such a supposition, the adiabatic
approximation �, ��1 leads to the Langevin equation (cf. Eq. (25))

u̇= fa(u) +
√

Ia(u)�(t) ; (50)

where the force fa(u) and the noise intensity Ia(u) are as follows:

fa(u) ≡ −u+ S0uada(u) ;

Ia(u) ≡ Iu + (Iv + ISu2a)d2
a(u); da(u) ≡ (1 + u2a)−1 : (51)

The corresponding distribution (cf. Eqs. (29) and (30))

Pa(u) =
Z−1

Ia(u)
exp{−Ea(u)} ; (52)

where Z is the partition function, is determined by an e5ective potential

Ea(u) ≡ −
∫ u

0

fa(u′)
Ia(u′)

du′ : (53)

The extremum points of this distribution are determined by the equation

2aISu2a + (1 + u2a)2u1−a[S0 − u1−a(1 + u2a)] = 2a(IS − 2Iv) ; (54)

according to which the boundary of the 2ux state

IS = 2Iv ; (55)

relates to the condition u = 0. Critical values of state parameters are 7xed by the
condition |du=dS0|=∞ leading to additional equation

u2(1−a)(1 + u2a)2[(2 + a−1) + (a−1 − 1)u−2a]

− 1
2S0u

1−a(1 + u2a)[(3 + a−1) + (a−1 − 1)u−2a] = 2aIS : (56)

Expressions (54)–(56) generalize the simple equalities (31), (42) and (46) related to
the case a= 1.
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Fig. 5. The S0-dependence of the steady-state velocity u at a = 0, 0.5, 0.7, 0.9, 1.0 from top to bottom.

Above expressions show that qualitative results of Section 3 obtained for the partic-
ular case a= 1 are kept valid with the passage to the general case 06 a6 1. Indeed,
the most essential di5erence is observed for the noiseless case, namely the steady-state
velocity u becomes non-zero within the whole interval of the driven slope S0 (see
Fig. 5). An increase of the vertical velocity noise Iv causes monotonic u-growth,
whereas IS -increase leads to an e5ective barrier formation near the point u = 0, so
that the dependence u(S0) becomes non-monotonic at magnitudes IS above the straight
line (55) (see Fig. 6). Here, by analogy with noiseless case (see Fig. 1), lower branches
of curves correspond to unstable magnitudes of the order parameter, while the upper
meet the stable ones. According to Fig. 7, the domain, where avalanches can not be
created, is located near intermediate magnitudes of the state parameters S0, Iv, IS . The
phase diagram related to the avalanche formation reveals the same form as for the
simplest case a = 1, but the straight line (42) shifts abruptly to (55) with escaping
the point a= 1 (compare Fig. 8 with Fig. 4). According to Fig. 9, an increase of the
vertical velocity noise Iv increases the domain of the avalanche formation.

5. Size distribution in self-similar ensemble of avalanches

In contrast to the previous discussion, where the process of a single avalanche for-
mation has been considered, now we will study analytically the self-similar size dis-
tribution (2) of an avalanche ensemble. This means that, along the line of Section 3,
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we will account for noises of a complete set of degrees of freedom, on the one hand,
and the fractional feedback type introduced in Section 4, on the other one. Thereby,
the Lorenz system uni7ed in the above manner is the basis of our examination. How-
ever, instead of visible geometric-and-mechanic characteristics of a ‘real’ sand pile, the
system under consideration is now parameterized by a set of pseudo-thermodynamical
variables, that describes the avalanche ensemble in the spirit of the famous Edwards
paradigm [22,23] generalized to non-stationary system. With this method, we study
time dependencies of the avalanche size, non-extensive complexity and non-conserved
energy of the moving grains. Within the framework of the usual synergetic approach,
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these degrees of freedom play the role of order parameter, conjugate 7eld and control
parameter, respectively.
It is principally important that the use of the slaving principle of both synergetics

and fractional nature of the system feedback is shown to stipulate the multiplicative
character of noise. It will be shown, that this causes a non-extensivity of the applied
thermodynamical scheme, so that we have to use q-weighted averages instead of usual
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ones. So, energy of moving sand grains is de7ned by the expression

�q ≡
∑
i

�ip
q
i ; (57)

where pi is a probability to move grain i with energy �i, q �= 1 is a positive parameter
that is a measure for the system’s non-extensivity determined below. Non-extensive
complexity of moving sand grains is an analog to Tsallis entropy [24] that is determined
as follows:

1q ≡ −
∑

i p
q
i − 1

q− 1
: (58)

The three-parameter set of the standard synergetic scheme [27] is completed by the
avalanche size s.
Following the above elaborated line, we postulate that a self-consistent behavior

of the considered system is presented adequately by a set of pointed out quantities
governed by the Lorenz-type equations (cf. Eqs. (49))

�sṡ=−s+ as1q +
√
Is�(t) ;

�11̇q =−1q + a1s�=2�q +
√
I1�(t) ;

���̇q = (�0 − �q)− a�s�=21q +
√
I��(t) : (59)

Here �s, �1, �� note relaxation times of corresponding values, as, a1, a� are related
feedback parameters, Is, I1, I� are respective noise intensities, � is a positive exponent
and �0 is the externally driven energy of the sand motion. The distinguishing feature
of the 7rst of these equations is that in a noiseless case genuine characteristics s, 1q

are linearly connected. On the other hand, the two last equations (59) show that the
connection of values �q, 1q, that are of a thermodynamic type, with the avalanche size
s is nonlinear. Physically, this means a linear relation between the complexity and the
avalanche size near steady state. Moving away this leads to negative feedback of the
avalanche size and the complexity on the energy that, in accordance with Le Chatelier
principle, results in the energy decrease. Moreover, positive feedback appears of the
avalanche size and the energy on the complexity, which causes complexity increase
that is the reason for the avalanche ensemble’s self-organization.
To analyze system (59), it is convenient to measure the time t in unit �s and introduce

the scales for variables s, 1q, �q, Is, I1, and I� as follows:

ssc ≡ (a1a�)−1=�; 1sc
q ≡ a−1

s (a1a�)−1=�; �scq ≡ a−1
s a−(1=�+1=2)

1 a−(1=�−1=2)
� ;

I scs ≡ (a1a�)−2=�; I sc1 ≡ a−2
s (a1a�)−2=�; I sc� ≡ a−2

s a−(2=�+1)
1 a−(2=�−1)

� : (60)

Then, the scaled Lorenz system (59) takes the simple form

ṡ=−s+ 1q +
√
Is�(t);

#1̇q =−1q + s�=2�q +
√
I1�(t);

3�̇q = (�0 − �q)− s�=21q +
√
I��(t) ; (61)
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with the ratios of relaxation times

# ≡ �1=�s; 3 ≡ ��=�s : (62)

It is worth to notice that system (61) is passed to the form of Eqs. (49) if the values
s, 1q, �q, �=2, #, and 3 are replaced by u, v, S, a, �, and �, respectively.
It is well-known that a complete set of SOC systems can be reduced to one of

two families [19]: systems with deterministic dynamics extremely driven by a random
environment (growing interface models, Bak–Sneppen evolution model etc.) and the
stochastic dynamics family (models of earthquakes, forest-7re etc.). 2 A remarkable
peculiarity of the obtained system (61) is the possibility to present both mentioned
families in a natural manner. The former is related to the noiseless case, when Is,
I1, I� = 0 but the magnitude of the energy relaxation time is larger than that of the
complexity and avalanche size (��¿ �1; �s); on the other hand, a parameter of the
environment drive �0 has to take a larger value than the critical one �c=1 [17]. In such
a case, system (61) describes a strange attractor that may represent the behavior of SOC
systems of the 7rst type. A proper stochastic behavior is relevant for non-vanishing
to non-zeroth noise intensities Is, I1, I� �= 0 that make possible the appearance of the
SOC regime even in the absence of a driven a5ect (�0 = 0).

Taking into account that the problem of the Lorenz strange attractor is well-known
[27], we will restrict ourselves to the treatment of the stochastic system, where the
adiabatic conditions #; 3�1 are applicable. Then, the two last equations of system
(61) lead to dependencies of the type of Eqs. (23)

1q(t) = T1q + 1̃q�(t); �q(t) = T�q + �̃q�(t) ; (63)

where the deterministic and the 2uctuational components are determined as follows (cf.
Eqs. (24))

T1q ≡ �0s�=2d�(s); 1̃q ≡
√
I1 + I�s�d�(s) ;

T�q ≡ �0d�(s); �̃q ≡
√
I� + I1s�d�(s); d�(s) ≡ (1 + s�)−1 : (64)

Due to the slaving principle of synergetics, the initially adiabatic noises of the com-
plexity and the energy are transformed to a multiplicative form. On the other hand,
the relation between the complexity and energy

T1q =
√

T�q(�0 − T�q) ; (65)

that can be deduced with the dependencies (64), leads to the expression

T =−
(
1− �0

2 T�q

)−1√
�0

T�q
− 1 (66)

for the e5ective temperature T ≡ 9 T�q=9 T1q. As depicted in Fig. 10a, T is a monotonically
increasing function of the energy with boundary values T ( T�q=0)=0 and T ( T�q=�0=2)=
∞. At the latter point the magnitude T changes instantaneously to −∞ and then
increases monotonically again to initial value T = 0 at T�q = �0. This means that in the

2 In general, we deal with a much more complicated problem, see Ref. [29].
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Fig. 10. The energy dependences of the avalanche ensemble temperatures: (a) nonstationary magnitude T
versus ratio T�q=�0; (b) stationary temperature T0 versus �0.

domain 06 T�q ¡�0=2 the avalanche system is dissipative and behaves in usual manner;
on the contrast, in the domain �0=2¡ T�q6 �0 a self-organization process evolves, so
that an energy increase leads to a complexity decrease, in accordance with a negative
temperature. At steady state, where an avalanche has got a stationary size s0=

√
�0 − 1,

the temperature takes the stationary value

T0 =−
√
�0 − 1

1− �0=2
(67)

that is negative in the supercritical domain 16 �0 ¡ 2. According to Fig. 10b, the
magnitude T0 decreases monotonically with the driven energy from value T0(�0=1)=0
to T0(�0 → 2) → −∞.
The presented self-organization regime relates to externally driven systems, which

are relevant for the usual phase transition but not to the SOC itself. To study the
latter within the above consideration, let us combine Eqs. (63) and (64) with the 7rst
of the Eqs. (61) in that way that has been used above for obtaining the Langevin
equation (25). By analogy with Section 4, this leads to stochastic equation (50), where
the e5ective force and noise intensity are given by Eqs. (51) with accuracy to the
replacements mentioned after Eqs. (62): the quantities s, 1q, �q, �=2 have to be taken
instead of u, v, S, a, respectively. Then, all results obtained in Section 4 can be used
immediately. Particularly, it is found that the in2uence of a random scattering of the
avalanche size is non-essential, whereas energy and complexity noises lead to a crucial
e5ect. The related picture is re2ected by Fig. 8 taken in plane I� − I1 that is formed
by corresponding noise intensities of the avalanche ensemble. The mixed domain A+N
with respect to the intermittency regime is bounded by the straight line (55) and the
bell-shaped curve type of Eqs. (46). According to Fig. 9, where exponent a has to
be replaced by �=2, the random scattering growth of the complexity extends the SOC
domain along the axis of the exponent �.
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Now, we will discuss the distribution of the avalanche size on basis of Eqs.
(51)–(53). For arbitrary noise intensities one has

P(s) =
Z−1

I(s)
exp

{∫ s

0

f(s′)
I(s′)

ds′
}

;

f(s) ≡ −s+ �0s�=2d�(s) ;

I(s) ≡ Is + (I1 + I�s�)d2
�(s); d�(s) ≡ (1 + s�)−1 : (68)

In the SOC regime the driven energy is vanished, �0 = 0 and the distribution (68)
behaves as depicted in Fig. 11 for di5erent noise intensities of both energy and com-
plexity. It can be seen that the power-law dependence inherent in the SOC regime is
observed only in the limits s�1 and Is, I1�I�. In this case, the distribution (68) is
reduced to the canonical form (2), where the second multiplier takes the form

P(s) =
d−2
� (s)
Z

exp
{
−I−1

�

∫ s

0

d−2
� (s′)
(s′)�−1 ds′

}
; d�(s) ≡ (1 + s�)−1 : (69)

It is easy to see that the deviation of this multiplier from a constant value is estimated
with term ∼ s2−�, that increases with decrease of � and growth of avalanche size to
extremely large magnitudes s ∼ 1, i.e., with escaping SOC domain. This is con7rmed
by Fig. 12, where the deviation �� of the slope of dependence P(s), Eqs. (68) in the
linear domain from the theory parameter � is depicted as a function of the parameter
� itself. In accordance with the above estimation, it can be seen that the deviation ��
takes a maximal value ��¡ 10−1� at non-essential magnitudes �¡ 1 or, with noise
intensity growth to enormous values IS ∼ 103.
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6. Discussion

A remarkable peculiarity of expression (69) is that, within the limits s�1, Is, I1�I�
inherent in the SOC regime, it can be expressed in terms of standard Gamma-function
4(x) and fractional integral I2−�

−s of order 2 − � (see Appendix A and, for details,
Refs. [30,31])

P(s) =
d−2
� (s)
Z

exp
{
−4(2− �)

I�
I2−�

−s d−2
� (s)

}
: (70)

On the other hand, it is well-known [25] that expressions of this kind appear as a
solution of the fractional Fokker–Planck equation

D!
t P(s; t) =D$

−s

{
sP(s; t) +

I�
4($)

D$
−s[d

2
�P(s; t)]

}
; (71)

where the fractional derivative D$
x (see (A.2)) is used to be inverted to the fractional

integral (A.1). Multiplying Eq. (71) by term s2$ and averaging over s according to
the de7nitions,

|s| ≡ 〈s7〉1=7; 〈s7〉 ≡
∫ ∞

−∞
s7P(s; t) ds; 7¿ 0 ; (72)

one obtains at 7 ≡ 2$

|s|z ∼ t; z =
2$
!

; (73)

where z is a dynamical exponent. This relation corresponds to the large time limit,
where only the di5usional contribution is essential. Combining expressions (70), (73)
and (A.1) leads to the relations 2− �= $ = z!=2, that yield

�= 2− z!
2

: (74)
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Comparing this equation with the second of the known relations (1), one obtains

!z =
4
D

: (75)

The mean-7eld magnitudes ! = 1 and D = 4 are related to the dynamical exponent
z = 1 that, in accordance with de7nition (73), is related to the unusual ballistic limit
of the SOC regime. On the other hand, the fractional Fokker–Planck equation (71)
leads to the usual di5usional regime with z = 2 only in the arti7cial case, when the
time-derivative exponent is assumed to be != 1

2 .
The obvious reason for a such discrepancy is the non-consistent application of the

usual 7eld relations (1) to the Lorenz system (61). In this system, the stochastic degrees
of freedom s, 1q and �q, whose number is n=3, serve as the di5erent space directions.
However, the stochastic process evolves for any of these variables in a plane spanned
by the given variable itself and its conjugated momentum. Moreover, the multiplicative
character of noise, which is determined by the exponent a in expressions (51), reduces
the fractal dimension of every plane to the value 2(1 − a) [28]. Thus, the resulting
fractal dimension of the phase space, in that the stochastic system evolves, is as follows:

D = 2n(1− a) ; (76)

where n=3 for the used Lorenz system. Inserting this dimension into expression (75)
leads to !z=2, which, in contrast to the relation !z=1 obtained above, is correct in
the simplest case ! = 1, z = 2 [the latter is relevant to a single stochastic degree of
freedom (n=1) with additive noise (a=0)]. In the general case, Eqs. (74)–(76) yield
the 7nal result

�= 2
[
1− 1

2n(1− a)

]
: (77)

The respective dependencies are depicted in Figs. 13a,b to show that the exponent
� increases monotonically from its minimum magnitude � = 1 at the critical number
(1 − a)−1 to upper value � = 2 in the limit n → ∞; thereby, an a-growth shifts the
dependence �(n) to large magnitudes n, i. e., decreases the exponent �.
It is easy to see that relation (77) reproduces known results of di5erent approaches

for the dimension D (see Ref. [32]). In the case related to mean-7eld theory, one has
� = 3

2 and equation (77) expresses the number of self-consistent stochastic equations
needed for treating the SOC behavior as a function of the exponent of the corresponding
multiplicative noise:

n=
2

1− a
: (78)

In accordance with Fig. 13c, a self-consistent mean-7eld treatment is possible if the
number of relevant equations is larger than the minimum magnitude nc=2. Approaches
[5–7,16,19] represent examples of such considerations, where noise is supposed to have
additive character (a=0). Switching the multiplicative noise leads to an a-growth and
non-contradicting representation of the SOC demands an increase in the number of
self-consistent equations: for example, within the 7eld scheme [20] related to directed
percolation (a = 1

2), the mean-7eld approximation is applicable for dimensions larger
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Fig. 13. Dependences of exponent �: (a) on equations number n (a= 0; 13 ;
1
2 ;

2
3 from top to bottom); (b) on

exponent a (n = 2; 3; 4; 6; 8; 10 from bottom to top); (c) phase diagram for mean-7eld and non-extensivity
domains.

than the critical magnitude dc=4; here and in Refs. [17,18] the Lorenz scheme (n=3)
with multiplicative noise is characterized by the exponent a= 1

3 (see below).
Let us now focus on the relation of the above exponents to the non-extensivity

parameter q related to Tsallis de7nitions (57) and (58) [24]. The relevant kinetic
behavior could be described by the nonlinear Fokker–Planck equation

D!
t P(s; t) =D2

−sP
q(s; t) ; (79)

where D!
t is the fractional derivative and the measure units are chosen in such a

way that the e5ective di5usion coe6cient disappears (!¿ 0, q¿ 0 are the relevant
exponents [33,34]). Supposing a normalized distribution function in a self-similar form
type of Eq. (2)

P(s; t) = s−1
c P(x); sc ≡ sc(t); x ≡ s=sc ; (80)

we obtain

sq+1
c ∼ t!; Pq−1 ∼ x2 : (81)

On the other hand, we could use the fractional Fokker–Planck equation of the type of
Eq. (71):

D!
t P(s; t) =D2$

−sP(s; t) : (82)
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Inserting the solution (80), one 7nds the dependencies

s2$c ∼ t!; P ∼ x2$−1; x → 0 (83)

whose comparison with Eqs. (81) yields

1 + q= 2$ : (84)

Because the average |s| in Eq. (72) is reduced to the scale sc in the case of self-similar
systems, the relevant dependencies (73), (81), and (83) give

1 + q= z! : (85)

Combining this equality with Eqs. (75) and (76) leads to the resulting expression for
the non-extensivity parameter of the considered system:

1 + q=
2

n(1− a)
: (86)

The minimal magnitude q= 2=n− 1 is related to systems with additive noise (a= 0),
which is relevant to the mean-7eld picture at a number of governing equations n¡ 2
(n = 1). Switching the multiplicative noise with increasing exponent a¿ 0 leads to a
q-growth and the self-organizing system gets a non-extensive character (q¿ 1) in the
limit n 6 1=(1 − a). In accordance with the above estimation the fractional Lorenz
system is non-extensive, essentially if the exponent a¿ 2

3 .
It is worth to remember that above we have assumed the superdi5usion process

only to be related to LNevy 2ights at discrete time instant with arbitrary displacements,
including in7nite ones [35]. Related to the Fokker–Planck equation (71), such processes
are characterized by exponents !=1 and $¡ 1, the 7rst of which is constant, whereas
the second one characterizes the fractal time-sequence of the LNevy 2ights and leads
to the dynamical exponent z ≡ 2$=!¡ 2 (see the last of Eqs. (73)). The probability
distribution of the displacement x, that is dependent on microscopic conditions, reads

p(x) ∼ x−(D+�) (87)

and is characterized by the fractal dimension D and the microscopic step exponent �.
It is obvious that in the case of rare events, when �¡ 2, the dynamical exponent z
is reduced to the microscopic step exponent (z = �¡ 2), whereas at �¿ 2 one has
z = 2 [36].
In the opposite case of subdi5usion processes, a microscopical ingredient is the ran-

dom LNevy walks instead of the discrete LNevy 2ights. This process evolves continuously
in course of the time over discrete placed traps, so that the exponents !¡ 1 describes
fractal properties of this space that depend on microscopic conditions. These properties
generate the transformation of the usual Boltzmann–Gibbs statistics in a non-extensive
manner [24]. The subdi5usion process is presented by the Tsallis-type distribution [37]

p(x)˙ [1 + �(q− 1)x2]−1=(q−1); � = const¿ 0 ; (88)

where the deviation q−1 of the non-extensive parameter is caused by the fractal nature
of the system phase space that is connected to the step exponent � as follows:

q= 1 +
2

D + �
: (89)
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A formal advantage of this distribution (88) is that the corresponding q-weighted
average

〈x2〉q ≡
∫

x2pq(x) dDx ; (90)

where the integrand varies as x−(1+�), converges for arbitrary step exponents �¿ 0. As
a result, the equation of motion of the random LNevy walker is given by

〈x2〉q ∼ t!; !=

{
q− 1 at �; q¡ 2 ;

1− (q− 1)D2 at �¿ 2; q¿ 1 :
(91)

In contrast to Eq. (83), where the exponents $¡ 1, ! = 1 are relevant for the su-
perdi5usion, one here has inverted relations $ = 1, !¡ 1. Thus, in accordance with
the subdi5usion nature, the last equality (73) yields the dynamical exponent z¿ 2.
In the general case $, ! �= 1, inserting Eqs. (91) into relation (85) leads to the

result

z =




q+1

1−D
2 (q−1)

at 1¡q6 qD ;

q+1
q−1 at qD6 q6 2 ;

(92)

where the boundary value of the non-extensivity parameter is introduced

qD ≡ 4 + D
2 + D

: (93)

To avoid a mistake, let us focus that in contrast to equalities (1), (74) and (75), which
could be related to both the real phase space and the con7gurational one (the latter is
spanned by variables of governing equations), the above obtained relations (91)–(93)
are relevant for the real phase space only. This is re2ected by addressing the fractal
dimension D to the only real coordinate space in the former case, whereas in the latter
it is reduced to the e5ective value (76). According to our treatment, a central role
is played by relation (76) since, in analogy with a renormalization group, we have
considered the properties of the con7gurational space but not real di5usion process.
Finally, let us ask the question, why the Lorenz system is used and not the RQossler

one or another? The reason can be recognized within a supersymmetry 7eld approach,
whose use shows that the Lorenz system could be generated by the Langevin equation
for an order parameter that is relevant for a standard stochastic system [38]. On the
other hand, it is easy to see with microscopic consideration that the Lorenz system is
related to the simplest Hamiltonian of a boson–fermion system [39]. Here, the bosons
are described by creation and annihilation operators b+l , bl, satisfying the usual com-
mutation relation: [bl; b+m]=�lm, where l; m are the site numbers. The two-level Fermion
subsystem is described by operators a+l7, al7, 7= 1; 2, that ful7ll the anti-commutation
relation {al7; a+m�} = �lm�7�. The occupation numbers b+k bk determine the Boson dis-
tribution in k-representation that corresponds to the Fourier transform over lattice
sites l. To represent the Fermi subsystem we introduce the operator dl ≡ a+l1al2 de-
termining the polarization with respect to the saturation over levels 7 = 1; 2, as well
as the occupation numbers nl7 ≡ a+l7al7. The behavior of the system is de7ned by the
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Dicke Hamiltonian (˝= 1)

H =
∑
k

{
(E1nk1 + E2nk2) + !kb+k bk +

i
2
w(b+k dk − d+

k bk)
}

; (94)

where E1;2 are Fermi energies, !k is the Boson dispersion law, the imaginary unit
before the interaction w re2ects the Hermitian property.
The Heisenberg equations of motion are

ḃk =−i!kbk +
w
2
dk ; (95)

ḋk =−iSdk +
w
2
bk(nk2 − nk1); S ≡ E2 − E1 ; (96)

ṅk1 =
w
2
(b+k dk + d+

k bk); ṅk2 =−w
2
(b+k dk + d+

k bk) : (97)

In resonance, the 7rst terms on the right-hand sides of equations (96) and (97) contain-
ing frequencies !k and = may be suppressed by introducing the multipliers exp(−i!kt)
and exp(−iSt) for the time dependencies bk(t), dk(t), respectively. To take the dissi-
pation into account, these frequencies acquire additional imaginary terms −i=�x, −i=�y
characterized by relaxation times �x, �y (here the conditions Im!k ¡ 0, Im=¡ 0 re-
2ect the causality principle). As a result, equations (96) and (97) get the dissipative
terms −bk=�x, −dk=�y, where �x is the relaxation time of Boson distribution and �y
is the Fermion polarization time. Obviously, one can suppose that the dissipation also
in2uences the Fermi levels occupancies nk7(t). However, since the stationary values
are n0k7 �= 0 (in case of an external drive n0k2 ¿n0k1), the dissipative terms in Eqs. (97)
take much more complicated form −(nk7 − n0k7)=�S , where �S is the relaxation time
of the Fermion distribution over levels 7= 1; 2.
Now, let us introduce the macroscopic quantities

uk ≡ 〈b+k 〉= 〈bk〉; vk ≡ 〈dk〉= 〈d+
k 〉 ;

Sk ≡ 〈nk2 − nk1〉; S0
k ≡ 〈n0k2 − n0k1〉 ; (98)

where the angular brackets denote thermodynamical averaging. Then, neglecting the
correlation in particle distribution over quantum states and omitting the dependence
on the wave vector k, the Heisenberg equations (96)–(97) result in the initial Lorenz
system (6), (8) and (9), with parameters a=1, �x=2=w, D=(2w)−1. The dimensionless
variables in the system (10)–(12) are as follows: u=w(�y�S)1=2ẋ, v=w(�y�S)1=2ẏ and
S = (w�y=2)y′.
As a result, we come to the conclusion that the Lorenz system is microscopically rel-

evant for the simplest boson–fermion system de7ned by the Dicke Hamiltonian (94). At
7rst glance, it can be shown that corresponding expression for a macroscopic (e5ective)
Hamiltonian is a synergetic potential, whose dependence on the degrees of freedom u,
v, S can generate the Lorenz system. But such a dependence is absent because the
e5ective Hamiltonian has to take into account quite di5erent commutation rules for
di5erent freedom degrees. An obvious advantage of the above mentioned supersym-
metry theory [38] and microscopic approach is that we have the explicit possibility to
handle such a di5erence. This situation is generally relevant for known problem of the
description of systems with intermediate statistics (see Ref. [40]).
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Appendix A

Here the basic properties of fractional integral and derivative, as well as Jackson
derivative are quoted for convenience. The integral of fractional order $ is de7ned by
equality [30,31]

I$
x f(x) ≡

1
4($)

∫ x

0

f(x′)
(x − x′)1−$ dx′; $¿ 0 ; (A.1)

where f(x) is an arbitrary function, 4(x) is the standard Gamma-function. To be
inverted to the fractional integral, the relevant derivative D$

x ≡ I−$
x of order $¿ 0

is determined as follows:

D$
x f(x) ≡

1
4(−$)

∫ x

0

f(x′)
(x − x′)1+$ dx′ : (A.2)

In the region 0¡$¡ 1 it is convenient to use the expression

D$
x f(x) ≡

$
4(1− $)

∫ x

0

f(x)− f(x′)
(x − x′)1+$ dx′ ; (A.3)

where we take into account the known equality x4(x) = 4(x + 1) for x ≡ −$.
Let us introduce a Jackson q-derivative, whose advantage for analysis of self-similar

system is that this derivative determines the rate of the variation of a function f(x)
with respect to the dilatation q �= 1, but not to the shift dx → 0, as in usual case q=1.
According to such a de7nition, the Jackson q-derivative reads

Dqf(x) ≡ f(qx)− f(x)
q− 1

; q¿ 0 : (A.4)

For the important case of a homogeneous function that satis7es to condition

f(qx) ≡ q7f(x) ; (A.5)

where q¿ 0 is a dilatation parameter and 7¿ 0 is an exponent, the Jackson q-derivative
is reduced to Jackson q-number

Dqf(x) = [7]qf(x); [7]q ≡
q7 − 1
q− 1

: (A.6)

It is easy to see that [7]q → 7 for q → 1, and that [7] scales as q7−1 for q → ∞. On
the other hand, the Tsallis q-logarithmic function

lnq x ≡ xq−1 − 1
q− 1

(A.7)

can be represented in the form of the Jackson q-number (A.6) with the index 7 =
(q− 1)(ln x=ln q). Accompanied by Eqs. (A.6) this relation and obvious equality

lnq(xy) = lnq x + lnq y + (q− 1)(lnq x)(lnq y) (A.8)

lead to the important rule for the Jackson derivative:

Dq [f(x)g(x)] =
[
Dqf(x)

]
g(x)+f(x)

[
Dqg(x)

]
+(q− 1)

[
Dqf(x)

] [
Dqg(x)

]
:

(A.9)
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To generalize Eqs. (A.3) and (A.4), let us 7nally introduce a fractional $-derivative:

D$f(x) ≡ $x−$

4(1− $)

∫ 1

0

f(x)− f(qx)
(1− q)1+$ dq; 0¡$¡ 1 : (A.10)

In the case of a self-similar system, the function f(x) is homogeneous, i.e., satis7es
to condition (A.5). Then, the de7nition (A.10) is simpli7ed:

D$f(x) ≡ {7}$x−$f(x); 0¡$¡ 1 ; (A.11)

where the fractional $-number is

{7}$ ≡ $
4(1− $)

∫ 1

0

1− q7

(1− q)1+$ dq; 0¡7; 0¡$¡ 1 : (A.12)

It can be expressed in terms of 4-functions:

{7}$ =
4(7+ 1)

4(7+ 1− $)
− 1

4(1− $)
: (A.13)

This number increases monotonically with growth of both 7, $, and has zero value at
$= 0, 7= 0 and characteristic values { 1

2}1=2 =
√
>=2− 1=

√
> � 0:322, {1}1 = 1. Such

behavior is characterized by the particular dependencies

{7}$ =




7 at $ = 1 ;

4(1 + 7)− 1
4(1−7) at $ = 7 ;

$
4(2−$) at 7= 1 :

(A.14)

Thus, if the q-number (A.6) converges to an exponent 7 in the limit q → 1, the
$-number (A.12) corresponding to the fractional integral (A.10) is reduced to a factor
7 at $ = 1.
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