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Jamming transition in traffic flow (between free and jammed traffic) for
homogeneous car following model has been investigated taking into account
fluctuations of characteristic acceleration/braking time. These fluctuations are
defined by Ornstein—Uhlenbeck process. The behaviour of the most probable
deviation of headway from its optimal value has been studied and phase
diagram of the system has been calculated for supercritical and subcritical
regimes of jam formation. It has been found that for the first regime the
fluctuations of characteristic acceleration/braking time result in coexistence of
free moving and jammed traffic, that is typical for the first-order phase
transition, and in appearance of two steady states for the second mode. These
states correspond to non—zero values of headway deviation at which the
formation of jam and congested traffic are possible. Using phase—plain
portraits method the kinetics of the system transitions has been analyzed for
different domains of the phase diagram for both regimes.
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Nowadays traffic problems attract considerable attention. For a study of the traffic
jams formation problem thermodynamic [1], stochastic [2], and some hydrodynamic and
kinetic theories [3, 4] are used. These theories are based on car—following model [3, 4],
Maxwell model [5], and cellular automaton model [3, 6]. Within the framework of
thermodynamic approach jamming transition is represented as nonequilibrium first—
order phase transition. The mentioned method describes the deterministic picture of
traffic flow. Stochastic theory, which is based on the master equation, allows to find a
stationary density of spatially-temporal distribution of traffic jams. However, the
fluctuations influence of the parameters characterizing the system is not finally studied.
It is known that fluctuations do not only play a role of the trigger for the phase transition
but also lead to essentially new system behaviour, and are a major cause for system’s
self-organization [7, 8]. Therefore, at describing the jamming transition the estimation of
fluctuations influence of the dynamical car characteristics is rational. This is achieved
within the framework of synergetic approach by the most natural way.
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One of the simplest schemes that describe the self-organization process is the
Lorentz system [8,9]. At first time it was offered for the atmospheric phenomena
description and then used for physics, chemistry, biology, sociology problems and so on.
Recently synergetic scheme was proposed to describe the jamming transition in traffic
flow [10]. In our work offered in Ref. [10] the synergetic approach will be developed
taking into account internal fluctuations of characteristic acceleration/braking time. This
parameter is a car characteristic; it indicates a time necessary for car to reach the
characteristic velocity and plays a key role at the traffic jam formation. We will show
that internal fluctuations, which have additive noise meaning, lead to the complication of
traffic flow behaviour. In this work the stationary regime of such system will be
considered and influence of the characteristic acceleration/braking time in the most
probable headway deviation from its optimal value will be studied. As it will be shown
this headway deviation characterizes a phase transition into the state that has traffic jam
meaning.

Basic equations. On the basis of the car following model for one-line highway it is
possible to show that dissipative dynamics of the homogeneous traffic flow can be
represented within the framework of the lorentz scheme [10]. To describe the jamming
transition we use the synergetic concept of phase transition, which is realized as a result
of mutually coordinated behaviour of three freedom degrees: an order parameter, a
conjugate field, and a control parameter. In traffic flow the roles of these quantities are
played by the absolute value of headway deviation between vehicular from a safety
distance £

7 =[Av—Af; 1)
by the deviation of velocity of the 7 variation from optimal value A/ty— V
v=Ax—hity+V, 2)

where f#, is the nominal time lag, V is the actual value of the velocity, and by
acceleration/braking time 7, respectively. Here x is the vehicle coordinate.

Let us consider the simplest homogeneous system with goal of definition of time
dependencies 7(7), v(¢), 7 (¢). To achieve this we will use a phenomenological approach.
In the equations of the motion it is assumed that in the autonomous mode the evolution
of the quantities 7, v and 7 has dissipative character and their relaxation to equilibrium
values is described by the Debye equation. Besides a Le Chatelier principle has a great
importance: since the decrease of acceleration/baking time 7 assists to the formation of
stable traffic flow, the headway deviation 7 and its velocity deviation v should vary so
that to prevent the growth of 7, and as a consequence to impede a jam formation. Also
the essentially important role is played by positive feedback of values 7 and 7 on v.
Namely the availability of this feedback is a reason for self-organization that leads to
traffic jam formation.

The Lorentz system takes into account the mentioned above circumstances by the
simplest way. Taking under consideration fluctuational addition it is determined as
follows

n=-nft,+v, (3)
v=—v/t,+g,11, 4)
i=(r, —0)ft, — g+ Alt). (5)
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Here the dot means the time differentiation; ¢,, ¢, and ¢, are the appropriate
relaxation times; g, and g, are the positive constants.

System (3)—(5) represents a base of the self-consistent description for the car—
following model. Here the first terms on the right-hand side of the equations describe
the relaxation of each quantity to an equilibrium value. In equation (3) the last term is a
usual addition. It is easy to see from this equation that in the stationary state headway
deviation is proportional to the velocity deviation.

The second term on the right-hand side of Eq.(4) describes the positive feedback of
headway deviation 7 and acceleration/braking time 7 on velocity deviation v. This
feedback leads to the increase of v and is the reason for traffic jam formation.

Equation (5) differs from (3), (4) because relaxation of 7 occurs not to zero but to
finite value 7, which represents the time necessary for automobile to reach a
characteristic velocity (the car property). Minus sign before the last term on the right—
hand side of equation (5) may be considered as a demonstration of the Le Chatelier
principle.

Quantity A(f) represents an influence of fluctuations of the characteristic
acceleration/braking time and is defined as Ornstein—Uhlenbeck process:

() =0, () =)= 62 /e, Jexl-le=e1/2, ) ©)

where &7 is the noise intensity, 7, is the correlation time of the process A(f).

Within the framework of the mentioned parametrization the formation of traffic
jams is represented as a result of spontaneous headway and velocity deviations if the
characteristic acceleration/braking time exceeds a critical value. It is reflected by the
appearance of the minimum of the effective potential which corresponds to the stationary
value of the headway deviation 7, [10]. Therefore we will be interested in 7 evolution
further.

In the general case system (3)—(5) have no analytical solution therefore we should
use the following approximation:

t,>>t,, 1, ~t

v (7
This condition implies that in the course of evolution the acceleration/braking time
7 is coordinated by variation of the headway and velocity deviations. Owing to this
condition in equation (5) a small parameter can be eliminated that allows us to assume
t.7 = 0. As aresult we derive expression for the control parameter in the following form
=1y —g, v+, A(t). (8)
To form simpler system let us reduce initial one to the one—parameter model. For
that it is necessary to express v and 7 via 7. Equation for v is determined by
differentiating with respect to time equation for the velocity deviation v obtained from
Eq. (3). Substituting expressions for v, v, and equation (8) into (4), and introducing
measure scales ¢, ﬁ,,,:(gvg,t,t,,)’l/z, vm:t,,’m(gvg,t,)’l/z, rc:(gvt,,z)’l, and gvt,t,72 for time,
headway deviation 7, velocity deviation v, acceleration/braking time 7, and for the noise

of the characteristic acceleration/braking time 7, respectively, we get:
7'7'+7'7(1+0'+772 ): nle—o)-n’ +nlt). 9)

Here the denotations are introduced:

o=t /t,, e=1,/7, . (10)
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Obtained expression allows us to write the evolution equation in the canonical form
of the motion equation for the nonlinear stochastic oscillator of the van der Pole
generator type

i+ (i = £ (n)+ gn)al), (11)
where
ym)=1vo+n,  fn)=nle-c)-n’, gln)=n (12)

Note that equation (11) takes into account reactive behaviour of the system. As is
known the task of the statistical physics is solved using distribution function P(f],f],t)
that represents probability density of the availability of the corresponding values of
headway deviation 7 and its rate of change 7 at a given instant of time ¢. Since jam in
the car flow is defined by headway 7 and time ¢ we have to consider projection of the
distribution function in the half-space (7, f). For that the kinetic equation for P(I], 7, t) is
reduced to the Fokker—Planck equation with respect to P(7,f) function.

Langevin and fokker—planck equations. For derivation of the evolution equation
for the probability density P(77, 7'7,[) we use continuity equation for function p(l], 7'7,t)

which is connected with p by following equality P(?], 7'7,t)=<p(77, 7'7,t)> , - Here ( > B

stands for averaging over noise A. Continuity equation is constructed by standard
manner:

o . . o .
(5—+ L(, n)jp(ﬂ, n.t)=—g(n)Alt)— p(7,n.1) (13)
t 677
where the operator
. o . .0 0 Y
L(3, n):—y(n);n+f7—+f(f7)—. (14)
7 on on

is introduced. Averaging equation (13) and using decomposition technique in cumulants
[11, 12] we obtain kinetic equation for P:

0  ~f. . ~ .
{5 +L(n, n)}P(n, n,t)= A, n,t)P(3,7.1). (15)
Here
Al 0 < )/ -
A, m,t)= g(n)aZ Wi (m,n), (16)
k=0
and moments of the correlation function are defined as follows:
. 1 =
C(A)(t):;!]‘o et -1, )dr,. (17)

Operators L®) are defined by recurrent formula
29 =260, 2] 20 = g(n)a/an. (18)

Here [,21, f?]z AB — BA is the denotation for the commutator.
To pass into the half-space (7, f) the distribution function moments are used

P, (m,t)=[\" G2)" P(3, m, ). (19)
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Namely these moments give us an opportunity to find an effective Fokker—Planck
equation. Taking into account components of integer orders, instead of (15) according to
[13], we get

%P(n, t)= _%D(l)(U)P(’L 1)+ aa;z DA (n)P(n, 1), (20)
where
D)= 1)+ ag () on+C > Wl () (), @

D)= g*(n)/7*(n) (22)
are the drift and diffusion coefficients, respectively.
Equation (20) corresponds to the Langevin equation governing the 7 evolution

3= D)+ (2P D), @)
where &(f) is a white noise with standard properties

(gh=0, (5=l ~1). (24)

For studying the transitions between behaviour regimes of the system let us use

path integral formalism. To achieve this aim we write Langevin equation in the form of
stochastic differential equation

dn :D(l)(n)dt +v2¢©Dp@ gy , (25)

where dw=&f)dt represents a Winner process. This notation allows us to get a new
-1

process y(f) with transition Jacobean dy/dn :( 2C (O)D(z)) . Since we use a white
noise then for y(f) the stochastic differentiation operator can be written

dy 1d%y 2
dy=——dn+— dn)". (26)
=g 41 2dnz( n)

Constructing by such way the evolution equation for y(f) process we obtain

expression for the white noise

: 0
1 D ! ( ©) (z))

t)= - +—|v2C"'D 27

5() \/ZC(O)D(Z) \/ZC(O)D(Z) 2 7)

with probability density P(é(t))oc exp(— I/ZIf 2(t))z?t. Here and further accent means

differentiation with respect to 7. Taking into account the relationship between
distributions P(7)=P(&)J, where J is the Jacobean of transition from & to 7 field,
according to [14,15], we get following expression

!

P(f], n,t)oc exp(—%J.Ldtj, (28)
where Onsager—Machlup function L acts as Lagrangian in Euclidean field theory
-2
S — 29
050 +U. (29)

Here the effective potential energy U is given by expression
2

0) '
U= D—_l[ 2C(°)D(2)j _ (30)
2C(O)D(2) 2
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Thus, the system’s kinetics will be characterized by Euler-Lagrange equation with
respect to the function (29).
Stationary states, phase diagrams and phase portraits. At first let us consider a
stationary states. Assuming 77 =0 in the euler-lagrange equation, we obtain

72 (r +cvg?)-(1/2)cOwg* =0, (1)

v (Vfg - Vef +201g*v2g )+ C0g?[(3vg - 2wy - >V 2g|=0. (32)
Headway deviation stationary values 7, which correspond to the extremum of the
effective potential energy function (30), are determined as solutions of equation (31).
The solution of equation (32) gives the point of plateau appearance in U vs g
dependence. Further using definitions for y(7), f{), and g(#), we analyze the transitions
for stochastic system in details. The dependence of the order parameter stationary values
on noise intensity and characteristic control parameter is given by equation

n’ +772(1+20‘—S—ZC(I))»(g—O'—ZC(l)IlJrO")JrC(O) =0. (33)
In this case the correlation function moments (6), which are determined by equation
(17), take the following form
=52, V=g, . (34)
Then from Egs. (33) and (34) for the phase diagram curve, that is the boundary of
the existence region of disordered phase (77,=0) corresponding to the free traffic, we get

e=5"/1+0)+0-25%, (35)

First of all we should note that separation of the low—frequency domain in noise
spectrum results in decrease of the effective time that is necessary for car to reach a
characteristic velocity.

The dependence of the headway deviation stationary values on the characteristic
acceleration/braking time 7, (8) is the solution of equation (33) and is shown in Fig.1 a.
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Fig. 1. Dependence of stationary value of headway deviation 7, on characteristic

acceleration/braking time &=7y/7, for c=1 and 7,=0.2:
a — for supercritical regime; b — for subcritical regime at = 0.1 and k =1.
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According to Fig. 1, a there are zero minimum in the dependence of effective
potential energy on headway deviation, which corresponds to disordered state (free
moving traffic), and minimum at nonzero stationary value 7y, which meets the ordered
state (traffic jam formation). Dotted line in Fig.1, a shows that these minimums are
separated by maximum, corresponding to unstable state of the system. Thus, the increase
of the noise intensity results in coexistence of disordered and ordered states inherent in
first-order phase transition.

Phase diagram of the system for different values of the noise correlation time z; is
represented in Fig. 2. There are three domains in it. Domain 1 corresponds to disordered
state of the system, i.e. free traffic. Domain 2 is characterized by coexistence of
disordered and ordered states, i.e. free and jammed traffic can coexist at such
parameters. Last domain 3 corresponds to ordered state of the system. Here only traffic
jam exists (minimum of the effective potential energy) while free traffic is unstable
(maximum of the effective potential energy).
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Fig. 2. Phase diagrams of the system in supercritical regime for different values of noise
correlation time at o=1: a — 7,=0.0; b — 7,=0.2; ¢ — 7,=0.4. Domain 1 corresponds
to disordered state (free moving traffic). In domain 2 ordered (traffic jam) and
disordered states coexist. Domain 3 meets ordered state.

As it is obvious from Fig. 2 with increase of the noise correlation time the domain
corresponding to free traffic decreases while domain of traffic jam increases.
For the consideration of the system kinetics let us use Euler-Lagrange equation

oL _doL_oR (36)
on dton on’
which is supplemented by dissipative function contribution R = 7> / 2 . Its form is typical

for generating functional method. Taking into account equations (29), (30), we find
differential equation of second—order

!
’

1(0?) 2, conpley;_| DY ~ct(4o®) |x
D D(2)

{(Dm)' D(z)_Dm( D(z)) —C(O)D(z)( D(z)j }0,

Equation (37) can be represented as a system of two first-order differential
equations. This reorganization simplifies the investigation of our model. Such equations
set can be solved using phase—plane method which allows us to consider the kinetic
behaviour of the system on the basis of phase portraits in the (7'7; 77) plane.

(37
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Phase—plane portraits of such system are shown in Fig. 3 for each domain of phase
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Fig. 3. Phase portraits of the system in supercritical regime for different domains of phase
diagram at =10, o=1 and 7,=0.2: a — domain 1 at £&=0.5; b — domain 2 at &=1.5;
¢ — domain 3 at &=3.

diagram in Fig. 2, b for 7,=0.2. Domain 1 has two singular points: D, and unstable node S
(Fig. 3, a). Here singular point D corresponds to free traffic flow (disordered state). This
point has complex character of stability because phase trajectories at 77 <0 converge to

D and diverge from it at 77>0 [16]. Coordinate of singular point S is determined by

solution of equation (32). Solutions of equations (31), (32) for noise intensity C”=10 are
pictured in Fig. 4, a. As is obvious from this figure the solution of equation (32) is
independent on characteristic acceleration/braking time ¢, i.e. it is shown by horizontal
line. Thus, coordinate of singular point S for all domains of phase diagram may be
defined by intersection of given horizontal line with vertical line for appropriate ¢ value.

Phase portrait for domain 2 of the phase diagram is shown in Fig. 3, b. It has four
singular points: D, unstable nodes N and O, and saddle S. Similar to the first case
singular point D corresponds to free traffic. Unstable node N corresponds to unstable
state of the system, namely, to the maximum of the effective potential energy. Saddle S
is determined by the solution of equation (32). Unstable node O characterizes the traffic
jam formation (ordered state).
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Fig. 4. Dependence of solutions 77, of equations (31) and (32) for stationary states on
characteristic acceleration/braking time &=7y/7. at =10, =02, and o =1

a — for supercritical regime: b — for subcritical regime at = 0.1 and £ =1.
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In Fig. 3, ¢ phase portrait meeting the domain 3 is demonstrated. There are three
singular points: D, saddle S, and unstable node O. Here point D corresponds to free
moving traffic also, but now phase trajectories, which pass through it, have closed form
at its vicinity [16]. As previously solution of equation (32) is presented by saddle
S. Unstable node O corresponds to traffic jam.

The above consideration represents supercritical regime of the traffic jam formation
corresponding to second—order phase transition. However we see that for given system
due to fluctuations of the characteristic acceleration/braking time free moving traffic and
traffic jam can coexist that inherent in the first-order phase transition (sub—critical
regime). In addition the phase portraits (Fig. 3, a—c) show that singular point O meeting
the traffic jam state is unstable. Thus, we should consider subcritical regime of the traffic
jam formation which is a true reason of self-organization and analogous to the first—
order phase transition.

For this let us assume that the relaxation time of headway deviation is the function
t,(n) increasing with # from initial value t,,(1+k)"1, k>0 to the final one #,, and is
determined by the simplest approximation

by /1 () =148/ o/, ) ) (38)

where 0<#,<1; k and #, are dispersion constant and scale. Then doing the same operations
as in the supercritical case we obtain equation (11), but now (1) and f{() are defined by
the following expressions:
1—n2 /a2
n / a + 772 ’

1+772 a
( / 2)2 (39)

f(?]):[8—0'(1+k/(1+772/a2)]77—(1+k/(1+772/a2))r73,

where a =17, /n, . Further Fokker—Planck equation, Langevin equation, and Onsager—

)/(77):1+o-+k

Machlup function are determined by the similar manner. However, insertion of Egs. (39)
into Eq. (31) gives the following expression for the stationary values of headway
deviation:

n*d +n? [d(m+ o-)—g—ZC(l)J—m(g—O'd +2C(l))+ ') = 0, (40)
where

d:1+k/(1+772/a2), m:1+0'+k(1—772/a2)/(1+772/a2)2. (41)

Equations (34), (40) and (41) define the boundary of the existence domain of
disordered phase (17p=0 in phase diagram
=6 1+o+k)+o(l+k)-25%z,. (42)
According to this the separation of the low—frequency region in the noise spectrum
leads to decrease of the time needed for car to reach a characteristic velocity.
Dependence 7(¢), that is a solution of equation (40), is pictured in Fig.1, b. This
figure show that increase of the noise intensity C” results in appearance of two
stationary states corresponding to minimums of the dependence of effective potential
energy on headway deviation #. Hence, we can conclude that two stationary values of
headway deviation from optimal value exist. At these values traffic jam and congested
traffic can be formed [10]. The smaller value corresponds to the metastable state (dashed
curve) while lager value (solid line) meets the stable ordered state of the system. These
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states are divided by unstable state (dotted line) corresponding to maximum of the
effective potential energy.

Phase diagrams of the system are shown in Fig. 5 for different values of the noise
correlation time z;. Here domain 1 corresponds to disordered state of the system, in other
words, only one minimum of the dependence of effective potential energy on headway
deviation exists meeting zero value. This minimum characterizes the free traffic. In
domain 2 disordered and ordered states coexist, so that in addition to zero minimum the
minimum appears meeting the nonzero value of headway deviation. This minimum
corresponds to traffic jam formation. Domain 3 meets the most complex form of
effective potential energy. Here the metastable and ordered states of the system coexist.
Metastable state appearance is caused by displacement of zero minimum (disordered
state) along the axis of headway deviation of the dependence of effective potential
energy. It implies that in this domain traffic jam can appear at two different values of
headway deviation from optimal value. And at the same time zero value of headway
deviation corresponds to maximum of effective potential energy, i.e. free traffic becomes
unstable. Domain 4 characterizes the ordered state of the system, i.e. traffic jam at a
given headway deviation value and unstable free traffic. Last domain 5 describes

b c
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Fig. 5. Phase diagrams of the system in subcritical regime for different values of noise
correlation time at &=0.1, o =1 and &=1: a — 7;=0.0; b — 7,=0.2; ¢ — 7;=0.4. Domain 1
corresponds to disordered state (free moving traffic). In domain 2 ordered (traffic jam)
and disordered states coexist. In domain 3 metastable (congested traffic) and ordered
states coexist. Domain 4 meets ordered state, and domain 5 meets metastable one.

metastable system’s state and is located near the boundary between domain 1 and 3. At
crossing the boundary from domain 1 to domain 5 transition of the displacement type
from disordered to metastable state occurs. It corresponds to appearance of only one
minimum of the effective potential energy and means the opportunity of congested
traffic formation at small value of headway deviation. Free traffic is unstable here too.
Let us now analyze kinetics of the system using Euler—Lagrange equation (36).
Phase—plane portraits of the system for four domains, that are shown in phase diagram
for 7,=0.2 (Fig. 5, b), are demonstrated in Fig. 6. Domain 1 is characterized by the

presence of three singular points: D, stable focus F and saddle S (Fig. 6, a). Here
singular point D corresponds to free traffic and has the same complex character with
singular point D for supercritical regime. Coordinates of the stable focus F and saddle S
are determined by the solutions of equation (32) with taking into account Egs. (39).
Solutions of Egs. (31), (32) for subcritical regime for noise intensity =10 are shown
in Fig. 4, b. As is obvious from the figure the solutions of equation (32) are independent
on characteristic acceleration/braking time &. Consequently, we may obtain the
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coordinates of singular points F' and S by intersection of corresponding horizontal lines
with vertical lines for appropriate & value. Thus the coordinates of singular points
S,S',F,F" can be defined for all phase diagram domains.

-0.04 1

00 0l 02 03 04 05 06 07 08 7 0 05 10 15 20 n

Fig. 6. Phase portraits of the system in subcritical regime for different domains of phase
diagram at a=0.1, =1 k=1 and 7;=0.2: @ — domain 1 at =10, &=1; b — domain 2 at
C9=2, &=1.5; ¢ — domain 3 at C”=10, &=2; d — domain 4 at CV=10, &=3.

Phase portrait of the system for domain 2 of phase diagram is shown in Fig. 6, b.
There are four singular points: D, saddles N and O, and stable focus F'. As in the
Fig. 6, a singular point D corresponds to free traffic, but now phase trajectories, which
pass through it, have closed form at its vicinity [16]. Point F' is determined by the
solution of equation (32). Saddle O characterizes the traffic jam formation. Saddle N
corresponds to unstable state of the system, namely, to maximum of the dependence of
effective potential energy on headway deviation #.

In Fig. 6, c¢ phase portrait for the most complex domain 3 of phase diagram is
demonstrated. The maximal number of singular points is placed here: D, saddles M, N
and O, stable focus F, and stable node F'. As in the Fig. 6a coordinates of points F and
F' are determined by solutions of equation (32). Singular points N and O have the same
meaning as in Fig. 6, b. Saddle M corresponds to metastable state of the system, namely,
to the formation of congested traffic.
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Phase portrait in Fig. 6, d corresponds to domain 4 of phase diagram. As is shown
above the solutions of equation (32) are represented by saddle . . and stable node F'.
Saddle O corresponds to jammed traffic.

Discussion. The above consideration shows that for supercritical regime, which
corresponds to the second—order phase transition, due to fluctuations of the characteristic
acceleration/bra—king time free and jammed traffic can coexist. As is known such a
picture is inherent in first—order phase transition. For subcritical regime, which meets the
first-order phase transition, due to regulation of fluctuations intensity of characteristic
acceleration/braking time a given system can be passed from free traffic regime to traffic
jam formation. The last state can appear at different values of headway deviation
between transport facilities. State of the system corresponding to the smaller value of
headway deviation may be represented as a congested traffic regime. However, the
correct answer can be defined using additional investigation of dynamical car
characteristics, but such study is out of our consideration framework.
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HNEPEXII MI’K PEXXUMAMU TPAHCIIOPTHOTI'O IIOTOKY
3 YPAXYBAHHAM ®JYKTYANIN XAPAKTEPHOI'O YACY
NPUCKOPEHHA/TAJIBMYBAHHSA
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Cymcoruil Oepacagnuil yHigepcumen,
eyn. Pumcwroco—Kopcakosa, 2, 40007 Cymu,
e—mail: kpe@sumdu.edu.ua

JocnijpkeHo nepexif MK peXnMaMu TPaHCHOPTHOTO MOTOKY (iZlealbHUM pyXOM
aBTOMOOUTIB Ta 3aTOPOM Ha JOPO3i) VIS OJHOPIAHOT MOJENi MOCHTIJOBHOTO PYyXY
aBTOMOOUTIB 3 ypaxyBaHHiIM (QIYKTyallii XapakTepHOI'0 4acy NPUCKOPEHHS/TaIbMY-
BaHHSA, SKi onucye mporiec OpHireliHa—YneHoOeka. J[oCmiKeHO MOBEIiHKY HaWOiIbII
IMOBIPHOTO BIIXWJICHHS 1HTEpBaly MiXK MallWHAMH BiJl HOTO ONTHUMAJILHOTO 3HAYCHHS
Ta MoOymoBaHO (a3oBy JiarpaMy CHUCTEMH JUIsl Cylep— Ta CYOKPHUTHYHOTO DPEKHMIB
(dhopMyBaHHS TpaHCIIOPTHOTO 3aTopy. s mepimoro pexuMy GIIyKTyarlii XapakTepHOTO
Yacy MPUCKOPCHHS/TaJbMYyBaHHS MPHBOAATH JIO CHIBICHYBaHHS 1I€aJIbHOIO pPyXy
aBTOMOOLTIB Ta TPAaHCIOPTHOTO 3aTOPy, LIO XapakTepHO Uil (ha30BOr0 MHEPEXOIy
nepuioro poxy. s Apyroro pexuMy 3HaWICHO 1Ba CTIiliKi CTaHH, IO BiIMOBiJAOTh
HEHYJIbOBUM 3HAYCHHSIM BiJXHUJICHHS IHTEPBAIy, 32 SKUX MOXIIHBE YTBOPCHHS 3aTOPY Ta
CTHCJIOTO PyXy MamiuH. BukopuctoByrouu MeToj (ha30BOi IUIONUHH, MPOAHAII30BAHO
KIHETHKY TMEPEeXOMdiB CHCTEMH, IO BiINOBIJAIOTH PI3HUM IiUISHKaM (ha30BOi AiarpaMu
U 000X PEKHUMIB.

Knouogi crosa: BIXWIeHHS iHTEpBaly MK aBTOMOOiUIAMH, cucTema JlopeHrs,
nponec OpHmTeitHa—Ynenbeka, ¢pa3osi giarpamu, piBHAHHS JIaH)KeBeHa.
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