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Abstract. A description of single defects is carried out within the gauge
theory where the compensating field represents the elastic shear and the
material field, being a complex order parameter, describes long-range cor-
relations in variation of potential relief of structural units (atoms). Disloca-
tion as a localized material field of the shear and disclination as a localized
rotation field are represented on the basis of simple variant of U(1) the-
ory. A description of a point defect leads to non Abelian SU(2) theory with
components of gauge field being relevant to different polarizations of elastic
wave.

1. Introduction

At present time the geometrical models of crystal defects based on obvious
or topological considerations are worked out and generally accepted [1, 2].
They allow the continual description of elastic fields created by these defects
[2]. Nevertheless, these models do not describe the real structure of defects
kernels. For example, there is no explanation for anomalous high values of
a diffusion coefficient along dislocation tubes.

Thus, the problem appears, within the framework of which the material
field accounting the atomic structure of defects should be described and a
force field created by these defects has to be reproduced. It turns out that
the bagis for representation of the former is the conception of rearrange-
able potential relief [3]. It allows self-consistent picture representing defect
structure within field approach.
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2. Field Theory of Crystal Defects

Let us consider the spatial distribution of a field that characterizes the
structure level of defects at steady state. For this purpose, it is necessary to
introduce a field U(x) conjugated to a material field p(x) that characterizes
distribution of structural units on the initial (atom) level. The later field
realizes a basis of irreducible representations of initial group of the system
symmetry. The distribution of the material field specifies thermodynamic
potential ® {p(x)} whose variation gives conjugate field [3]

_ 8%(x)
~ bp(x)

being determined analogously to energy of elementary excitations of many-
particle system [4]. Physically, this field represents the potential relief of
structural units on the initial level (for example, the field U(x) gives the
Paierls relief for dislocation distribution [5]).

A system deviation from equilibrium results in excitation of ensemble
of structural units, which is displayed in a smearing of the potential re-
lief. Related probability of steady state distribution U(x) is determined by
Boltzmann-like form

PO} o exp (-5 @)

which is given by the corresponding functional of the synergetic potential
V{U(x)} and excitation intensity © [3]. By definition, the functional order
parameter that characterizes new defect level is given by long-range corre-
lations of variation U (X') = U(X/) — (U(x’)) with respect to a deviation
0U(x) = U(x) — (U(x)) fixed at x = const:

. (08U (x) 6U(x"))
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where the averaging is performed over distribution (2). Here, the change
in characteristic length on new level is displayed as follows: if the potential
relief U(x) oscillates over small distances £ ~ a being microscopic, then
macroscopic order parameter £(x) varies at much more distances z > ¢
which scale £ > a corresponds to new level. To take into account such
scaling, it is convenient to introduce complex field of order parameter

e(x) = g(x)el?® 4)

U(x) (1)

= e?(x) 3)

where variation of the phase ¢(x) is observed at microscopic distances z ~
a. Then, transition from initial scale a to new one £ implies spontaneous
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breaking conformal invariance being realized below within the framework
of a gauge field scheme.

The simplest case of a scalar parameter (4) is characterized by the
symmetry group U(1) that makes external four-dimensional coordinate z,,,
p=0,1,2,3 ambiguous for new level (here zy = ct, ¢ is velocity of transver-
sal sound) [3]. This ambiguity reflects the appearance of defects and can be
compensated by prolongation of the derivative:

E—‘?—-¢V"§8“+F“, ©u=0,1,2,3 (5)
oz,

where I'* is the 4-potential of the corresponding gauge field. From geomet-
rical point of view I'* is the connectivity in the stratification, which is a
nontrivial generalization of the direct product of a manifold of initial struc-
tural units and gauge group U(1) [6]. To study new structure level, it is
convenient to use associated stratification, considering at each point z* not
the transformations of the gauge group, but the corresponding potential
I whose value is associated with 4-vector of displacements A* = (p,u),
p=10,1,2,3 by the equality I'* = —igA* where g is elastic charge [3].

Within four-dimensional representation, we consider the simplest Ginzburg
Landau scheme whose material Lagrangian

Lyn=Ln—L, (6)

is determined by usual term
Lo = g (VHel? — V(e) )

with gradient constant 8 > 0 and synergetic potential V(¢). The diminution
L. takes into account a specific integral condition for field distribution being
relevant to a defect:

frpm“:w}{dq::zmn, n=0,%l,... ®)

According to this condition, defects play the role of elementary carriers of
gauge fields to make a manifold of defect crystal multiply connected. It is
easily to see that the constraint (8) is a result of spontaneous breaking of
conformal invariance related to the Lagrangian

Le = v, (VPe — wed*yp) 9)

with respect to variation of Lagrange multiplier v,,. Actually, relevant dif-
ferential constraint reads:

(0 + TH)e = wedp. (10)
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Since the external coordinate z# corresponds to a change in the phase
p(z#) at distances z# ~ a while the internal coordinate should. describe
a variation of the amplitude e(z*) at z# > £, one obtains the condition
& = a/w which fixes the scale £ by the assignment of the parameter w < 1
(a is given a priori). On the other hand, the gauge choice

I# = ¥(—Ine + wyp), (11)

reducing Eq. (10) to identity, gets many-valued field I'* obeying to the
constraint (8) needed.
The equation for material field following from Eq. (6) takes the form

19V
Oe*

where the gauge condition I, = 0 has been taken into account. Here, the
order parameter ¢ varies at correlation length £, whereas the 4-displacement
AF = (p,u) related to the gauge field I'* = —igA* does at microscopic
distance a. Then, elastic charge g and correlation length £ are determined
by equalities

8#8uc = T*Te + B~ (12)

1 s B 2V
9=57i =70, A=—475 (13)
a (4] 9|, _p
and the scale ratio w = a/§ < 1 takes the magnitude
w = ga®. (14)

3. Description of Disclination and Dislocation

Within the framework of the field approach developed, let linear defects be
represented as autolocalized regions possessing rearranged potential relief.
A defect kernel is described by distribution €(r) of a relief rearrangement
parameter over spatial components of radius-vector r. A conjugated field is
specified by an elastic component of a 4-vector of static displacement A¥ =
(e, ue) reduced to 4-potential of a gauge field. Corresponding strengths

du
Xe = _Ee —gradp,, we =curl u, (15)
represent elastic components of shift and rotation vectors. The material
component A# = (o, u,y,) is related to coherent displacement of minima
and smearing of a potential relief. The gauge symmetry is connected with
invariance of medium characteristics relative to translation and rotation of
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a specimen as a whole. A charge (13) is determined by inherent atomic
distance a and correlation length £ to be characteristics of the material
field. Moreover, there is the third scale

v n o 2_K
A== v-, == 16
- >’ p (16)

[l
il

to determine a length of elastic field smearing (here p, n and i are density,
shear viscosity and related elastic modulus of medium, respectively). The
system behavior is determined by value of Landau-Ginzburg parameter

A n

K=EEZ—\/;—_“.. (17)

In weakly excited state the crystal possesses so large shear viscosity n that
one has the values « > 1. Under such a condition distributions of material
and elastic fields have soliton-like form type of Gross—Pitayevskii soliton
[3]. Here, rotation field w(r) corresponds to disclination whereas shear field
x(r) does to dislocation. Let study conditions for realization of the first
type solutions.

In real crystal there are stress concentrators always. Let one of them
creates a homogeneous rotation field wex; over distances z < A. If, in addi-
tion, the local rearrangement of atomic system takes place over distances
z < &, at critical value weyy = w, the situation is realized when variation of
thermodynamic potential

e=Ln+ Ly (18)

becomes decreasing. Here, material component L, is given by Egs. (6), (7),
(9) with synergetic potential

_A 2 B
V=21 + 3l (19)
where A and B are material constants. The field addition is specified as
L= % (044" — & arY? — — A, (20)
where A¥(r,t) is a 4-potential of the gauge field, ¢ is sound velocity, j* =
(pe,j) is a 4—current.
Using expressions (6), (7), (9), (18) — (20), it is easy to show that a

condition A® = O for variation of thermodynamic potential is realized if
external field is reduced to critical one w, defined by relation

1
wg = 3laled (21)
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where ¢ is the order parameter at steady state. The variation of thermo-
dynamic potential connected with creation of new phase

A® = / [®(e) — ®(c = 0)]dr (22)

takes the explicit form [4]

1 de\? (1 2
AP = pc2wg/ [— (l—ug) 52+§54+n~2 (.d_i) + (—\7_5 — curl ue) ] dr.
(23)

Here u, is elastic displacement, the coordinate r is measured in units of the
length A. Then, static Euler equations

£72V% = —(1 - ud)e + |ef%e, (24)
~curl curl u, = |¢|?u, (25)

and variation of thermodynamic potential (23) are equivalent to corre-
sponding equations of Ginzburg — Landau — Abrikosov theory for a vor-
tical (mixed) state of a superconductor [4] where an elastic component u,
of displacement vector is meant as vector potential and a rotation vector
we = curl u, is understood as magnetic field. Having in mind this analogy,
let the main results of theory [4] apply to the case under consideration.

The mixed state is realized provided x > 1/ v/2 within the interval of
rotation field wgi < wext < wez where

1
Wel = ll\/"gwc: We2 = \/iwc- (26)

Near w.o the closed packed lattice of vortical threads is formed: at weyy =
wey threads density N per unit of area is maximum and amounts to value
Nmax = 1/7€%; at wexy decreasing in a region wey — Wext <K wep it varies
according to the equality

N We  E° @7

where average over volume €2 is connected with a rotation vector magnitude
wext Dy equality

o 73?2_:;:_15“ — Wext), B =A/(F%)? = 1.1596. (28)

The average value
Tp = Wext — E2/2K = Wext, — (K — Wext)/B(26% — 1) (29)
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is smaller than applied field in a quantity being equal to the average of a
medium polarization

WUy = "27/2"' = -—(K - wext)/ﬁ(2n'2 - 1) (30)

The maximum value of a rotation vector field is reached in threads cores,
and the minimum one Wiy = Wext — vV 2(K —wext)/ (26% —1) — in the centers
of triangles formed by threads. The average variation of thermodynamic
potential (18) caused by medium rotation

1 = 1 (5 —.)?
22 (Lo m Y 220t 2 KT We)T
Ad = pciu? <2+we 2) pciw; {2+w,3 T4 B2 1) (31)

is the function of the average turning @, differentiation with respect to
which results in Eq. (29).

Near the lower critical value w,; threads density N = (x/27)@, is not
large and they can be treated independently. Taking into account that u.(r)
varies at distances 7 ~ 1 and ¢(r) does at r ~ k1, the displacements are
determined by Eq. (25) with |¢|2 ~ 1 and x > 1:

e = —K 1Ky (r) (32)

where K1(r) is the Hankel function of imaginary argument. Respectively,
the order parameter is determined by Eq. (24) with ue = 1/kr:

e~er at 7K n_l,
21— (kr)? at r>»>x! (33)

where c; is positive constant. According to Eq. (32) one has u, ~ —1/kr at
r < 1and u, ~ —/7/2kZ r71/2e " at r > 1. The dependence W, (wexs ) is of
steadily increasing nature: at wexy = we; it has the vertical tangent and with
wext growth it asymptotically approaches to the straight line W, = wext-
Thermodynamic potential per thread length unit is (27/#%)In . The we
value in a thread center is twice as large as wq.

The described system of vortical threads related to rotation field wey
corresponds to periodical distribution of rectilinear disclinations. In the
same way, it can be shown that the mixed state formed by threads in
a shear field xext is possible as well to be corresponded to a system of
rectilinear dislocations. To prove the above, it is necessary to determine
the law of strength field decrease near the threads. Within the framework
of the field scheme the function of this field components is performed by
material components of strength vectors: w, — for disclination and xm,
— for dislocation. Thus, it is necessary to reestablish dependencies wy,(r),



370

Xm(r) by the obtained dependence u.(r). In order to do this, let the elastic
part of current be written down:

Je = —ﬁg2c|e|2ue. (34)

As it is evident from the motion equation written in the form

5 .
Au = curl wm+-—:étﬂ+%, (35)

the material fields wy,, xm relevant to defects causes the current

jm = ¢ curl wm+%. (36)
ot

At steady state one has je + j, = 0 and for the case of simple rotation
(xm = 0) within actual region k™! < 7 < 1 where u, o 77! it follows
from Eqgs. (34), (36) that creation of a localized rotation thread results in
variation of the external field weyy by value w,, x Inr. Respectively, in a
shear field one has x,, o r~1. Since it is in this way that the stress of
the elastic field decreases near disclinations and dislocations [1], it can be
concluded that the described mixed state represents an ensemble of crystal
structure linear defects.

In real case the appearance of defects, being localized carriers of plastic
deformation, is caused by stress concentrators providing the system tran-
sition into the region wa < Wext < We2 (OF Xe1 < Xext < Xc2) of mixed
state even with lack of external load. The main condition of realization of
this inequalities is utmost large values of the parameter x (1 < Ink < k)
giving a very small lower critical field and the large upper one in accor-
dance with Eqs. (26). Therefore, in a real crystal there is a stable system
of lattice defects (with the exception of thread type crystals where in view
of potential relief stiffness resulting in large values of a gradient parameter
B the quantity x is small).

The consideration carried out above shows that a linear defect represents
an autolocalized formation corresponding to a small domain of rearranged
potential relief U(r) and to a considerable region of the elastic field dis-
tribution. The coordinate dependence of the corresponding fields is shown
in Fig. 1a. Since relief U(r) rearrangement in the region of a defect kernel
is reduced to smearing into ensemble {U(r)} and a field switching results
in contribution of energy —x,,(r o the total potential, the potential relief
picture near the defect has the form shown in Fig. 1b. It is smeared within
a kernel region that causes increase of a tube diffusion coefficient due to
considerably decrease of effective height of the barrier. The elastic field is
expressed in variation of a reference level and quick oscillations of potential
U(r) at interatomic distances.
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Figure 1. a: Coordinate dependence of material deformation field ¢ and elastic stress
field j. near a defect. b: Corresponding form of the potential relief

4. Non Abelian Field Theory of Point Defect

It seems at the first glance that the point defect, being the simplest one
in geometrical form, have to be described by a simple variant of the field
theory. Such insight is based on naive representation that the point defect is
a result of shrinking three orthogonal dislocation loops [2]. But it needs to
keep in mind that this model implies junction of dislocation kernels which
arrives at a new type of the field singularity being fundamentally non-
linear in nature. It turned out that, besides above solutions that belong to
Abelian gauge groups, the SU(2)-symmetry leads to new solution related
to topology change in distribution of plastic deformation being relevant to
the point defect [3]. Let us consider main statements of corresponding field
scheme.
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In this case, the order parameter ¢, has three components numbered
by polarizations a = 1,2,3 of related displacement waves. Moreover, two-
component material field ¥, describes a structural unit distribution for
each polarization a to realize a basis of the gauge group (the components
correspond to excited and unexcited states — in accordance with dimen-
sionality of generators 7# of the group SU(2) which are the Pauli matrices
[6]). Material component of generic Lagrangian has the form [7]

N 2 . B
Ly = iﬁl/z‘ﬁa»rl‘vzb\l'b + g 'V;beb’ - wjaea - "Z' |€a|4 (37)

where 3, w and B are constants, V& = 8,6, +€qpel5, §* = 0T WE is the
current of structural units, €, is structural constant which is reduced to
the antisymmetric tensor. Similar to all non Abelian models, the Lagrangian
(37) results in both asymptotic freedom and confinement. These facts reflect
the long-range order in distribution of structural units over excited and
unexcited states.

Variation of the action corresponding to Eq. (37) with respect to the
fields W,(z*) results in equation of Weyl-type

(P 80ab — 1EabT TE + wB V2,5 1) W = 0 (38)

where T is 2 x 2 unit matrix. It is typical that the term that contains the
order parameter (the plastic deformation field €°(z*)) performs the func-
tion of the mass of bare ”fermions” that are reduced to the structural units
distributed over excited and unexcited states. Using Eq. (38) allows to elim-
inate the field ¥,(z#) in the Lagrangian (37) to reduce the latter to the
form (6) where potential V(¢*) is given by Landau-type expansion with a
minimum at the point |}] = iw|¥*|. This means that dispersion law (the
mass) w of bare "fermion” has to be of imaginary nature. As a result of ex-
change with Higgs bosons, corresponding to the field of plastic deformation,
between the fermions, which are the structural units, the gauge symmetry
is spontaneously broken. Longitudinal component ¢! of the plastic defor-
mation takes on a fixed value ¢}, and the two transversal components ¢?,
€® transform into Goldstone bosons of restoration of SU(2)-symmetry, i.e.,
they become the elastic components e? and €? of the strain field. Conversely,
for the corresponding components I'Z and I'} of the potential of the stress
@, the dispersion law acquires a plastic character, while for the longitudinal
component I'} it remains elastic.

References

1. Katsneison, A.A. and Olemskoi, A.I (1990) Microscopic theory of inhomogeneous
structures, MIR Publishers, Moscow.



373

de Witt, R. (1977) Continual Theory of Dislocations, MIR Publishers, Moscow (Rus-
sian translation).

Olemskoi, A.L (1999) Theory of Structure Transformations in Non-equilibrium Con-
densed Matter, NOVA Science, N.-Y.

Lifshitz, E.M. and Pitaevskii, L.P. (1978) Statistical Physics, Part 2, Nauka, Moscow
(in Russian).

Hirth, J.P. and Lothe, J. (1968) Theory of Dislocations, McGraw-Hill, N.Y.
Dubrovin, B.A., Novikov, S.P., and Fomenko, A.T. (1979) Modern Geometry, Nauka,
Moscow (in Russxan)

Olemskoi, A.I. and Sklyar, I.A. (1992) Sov.Phys. Uspekhi 35, 455-480.



