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Abstract

The melting of ultrathin lubricant film by friction between atomically flat surfaces is studied. The additive noises
elastic shear stress and strain, and the temperature are introduced for building the phase diagrams with the domains
stick-slip, and dry friction. It is shown that increase of the strain noise intensity causes the lubricant film melting even
temperatures of the friction surfaces.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the noise influence on the friction process has an evident fundamental and practical imp
because in some experimental situations the fluctuations can change the frictional behavior critically, for e
providing the conditions for low friction[1–3]. In particular, the thermal noise, acting in any experiments,
convert the ultrathin lubricant film from stable solidlike phase state to the liquidlike one and, thus, transform
friction into the sliding or the stick-slip (the interrupted) modes. Therefore, in recent years the considerable s
has been given to the influence of disorder and randomimpurities in the interface on the static and the dyna
frictional phenomena[4–6]. These investigations show that a periodic surfaces are characterized by smaller fricti
coefficient during sliding than non-regular ones. Besides, the stick-slip dynamics, inherent in solid friction,
an increased attention on the atomic[7–9]and the macroscopic[10,11]levels as well as for granular mediums[12–
14]. In order to achieve the better understanding of the above phenomena, here an analytic approach is pu
which describes the transitions between friction modes due to variation of fluctuations of elastic and therm
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In the previous work[15] on the basis of rheological description of viscoelastic medium the system of k
equations has been obtained, which define the mutually coordinated evolution of the elastic shear comp
the stressσ and the strainε, and the temperatureT in ultrathin lubricant film during friction between atomical
flat mica surfaces. Let us write these equations using the measure units

(1)σs =
(

ρcυη0Tc

τT

)1/2

, εs = σs

G0
≡

(
τε

τT

)1/2(
ρcυTcτε

η0

)1/2

, Tc

for variablesσ , ε, T , respectively, whereρ is the mass density,cv is the specific heat capacity,Tc is the critical
temperature,η0 ≡ η(T = 2Tc) is the typical value of shear viscosityη, τT ≡ ρl2cυ/κ is the time of heat conductiv
ity, l is the scale of heat conductivity,κ is the heat conductivity constant,τε is the relaxation time of matter strai
G0 ≡ η0/τε :

(2)τσ σ̇ = −σ + gε,

(3)τεε̇ = −ε + (T − 1)σ,

(4)τT Ṫ = (Te − T ) − σε + σ 2.

Here the stress relaxation timeτσ , the temperatureTe of atomically flat mica friction surfaces, and the const
g = G/G0 are introduced, whereG is the lubricant shear modulus. It can be seen[15,16] that Eqs.(2) and (3)
are the Maxwell-type and the Kelvin–Voigt equations for viscoelastic matter, correspondingly. The latte
into account the dependence of the shear viscosity on the dimensionless temperatureη = η0/(T − 1). Eq. (4)
represents the heat conductivity expression, which describes the heat transfer from the friction surfaces to the laye
of lubricant, the effect of the dissipative heating of a viscous liquid flowing under the action of the stres
the reversible mechanic-and-caloric effect in linear approximation. These equations coincide with the sy
Lorenz system formally[17,18], where the elastic shear stress acts as the order parameter, the conjugate
reduced to the elastic shear strain, and the temperature is the control parameter. As is known this syste
used for description of the thermodynamic phase and the kinetic transitions.

In Ref. [15] a melting of ultrathin lubricant film by friction between atomically flat mica surfaces has
represented as a result of action of spontaneously appearing elastic field of stress shear component cau
heating of friction surfaces above the critical valueTc = 1 + g−1. Thus, according to such approach the stud
solid–liquid transition of lubricant film occurs due to both thermodynamic and shear melting. The initial reason
this self-organization process is the positive feedback ofT andσ onε (see Eq.(3)) conditioned by the temperatu
dependence of the shear viscosity leading to its divergence. On the other hand, the negative feedback oσ andε

onT in Eq.(4) plays an important role since it ensures the system stability.
According to this approach the lubricant represents a strongly viscous liquid that can behave itself si

the solid—has a high effective viscosity and still exhibits a yield stress[7,16]. Its solidlike state corresponds to th
elastic shear stressσ = 0 because the Maxwell-type equation(2), describing the elastic properties at steady s
σ̇ = 0, falls out of consideration. Eq.(3), containing the viscous stress, reduces to the Debye law describin
rapid relaxation of the elastic shear strain during the microscopic timeτε ≈ a/c ∼ 10−12 s, wherea ∼ 1 nm is the
lattice constant or the intermolecular distance andc ∼ 103 m/s is the sound velocity. At that the heat conductiv
equation(4) takes the form of simplest expression for temperature relaxation that does not contain the terms r
resenting the dissipative heating and the mechanic-and-caloric effect of a viscous liquid. At non-zero vaσ
Eqs.(2)–(4)describes the above mentioned properties inherent in the liquidlike state of lubricant.

Moreover, in accordance with Ref.[11] in the absence of shear deformations the temperature mean-s
displacement is defined by equality〈u2〉 = T/Ga. The average shear displacement is found from the relationship
〈u2〉 = σ 2a2/G2. The total mean-square displacement represents the sum of these expressions provided that
thermal fluctuations and the stress are independent. Above implies that the transition of lubricant from s
to fluidlike state is induced both by heating and under influence of stress generated by solid surfaces at frict
This agrees with examination of solid state instability within the framework of shear and dynamic disorder-driv
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melting representation in absence of thermal fluctuations. Thus, the strain fluctuations, related to the stress
the thermal fluctuations will be considered independently. It is assumed that the film becomes more liquidlike a
the friction force decreases with the temperature growthdue to decreasing activation energy barrier to molecula
hops. Besides, the friction force decreases with increasing velocity at the contactV = l∂ε/∂t because the latte
leads to the growth of the shear stressσ according to the Maxwell stress–strainε relation:∂σ/∂t = −σ/τσ +
G∂ε/∂t .

In present Letter the additive noises of the shear components of the elastic stress and strain, and the te
are taken into account in a lubricant film. The solidlike lubricant is assumed to be amorphous (disordered)
fore I study the glass transition represented in terms of a second-order phase transition. It is shown that increa
the strain noise intensity causes the lubricant film melting even at low temperatures of friction surfaces, a
the temperature noise plays a crucial role. The phase diagrams are calculated defining the domains of slid
slip, and dry friction in the planes temperature noise intensity—temperature of friction surfaces and noise inten
of shear elastic strain—temperature noise intensity.

2. Langevin and Fokker–Planck equations

Consider now the affect of additive noises of the elastic stress and strain shear componentsσ , ε, and the tem-
peratureT . With this aim, one should add to right-hand sides of Eqs.(2)–(4) the stochastic termsI1/2

σ ξ , I
1/2
ε ξ ,

I
1/2
T ξ (here the noise intensitiesIσ , Iε , IT are measured in units ofσ 2

s , ε2
s τ

−2
ε , (Tcκ/l)2, correspondingly, andξ(t)

is theδ-correlated stochastic function)[19]. Experimental data for organic lubricant[7] show that relaxation time
of the stressτσ at normal pressure is∼ 10−10 s, and it increases by several orders of magnitude at large pres
Since the ultrathin lubricant film consists of less than ten molecular layers the relaxation process of the t
ture to the valueTe occurs during time satisfying the conditionτT � τσ . Then, within the adiabatic approximatio
τσ � τε, τT , Eqs.(3) and (4)are reduced to the time dependencies

(5)ε(t) = ε̄ + ε̃ξ(t), T (t) = T̄ + T̃ ξ(t),

ε̄ ≡ σ
(
Te − 1+ σ 2)d(σ), ε̃ ≡

√
Iε+IT σ 2 d(σ),

(6)T̄ ≡ (
Te + 2σ 2)d(σ), T̃ ≡

√
IT + Iεσ 2 d(σ), d(σ ) ≡ (

1+ σ 2)−1
.

Here, deterministic components are reduced to obtained in Ref.[15], whereas fluctuational ones follow from th
known property of variance additivity ofindependent Gaussian random quantities[19]. Thus, using the slavin
principle inherent in synergetics[17,18]transforms noises of both strainε and temperatureT , which are adiabatic
initially, to multiplicative form. As a result, a combination of Eqs.(2), (5), and(6) leads to the Langevin equatio

(7)τσ σ̇ = f (σ) + √
I (σ ) ξ(t), f ≡ −∂V

∂σ
,

where the forcef is related to the synergetic potential[15]

(8)V = 1

2
(1− g)σ 2 + g

(
1− Te

2

)
ln

(
1+ σ 2)

and an expression for the effective noise intensity

(9)I (σ ) ≡ Iσ + (
Iε + IT σ 2)g2d2(σ )

is obtained in accordance with above mentioned property ofnoise variance additivity. In order to avoid mistak
one should notice that a direct insertion of Eqs.(5) and (6)into (2) results in the appearance of a stochastic addi

(10)
[
I1/2
σ + (

I1/2
ε + I

1/2
T σ

)
gd(σ)

]
ξ(t)
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whose squared amplitude is quite different from the effective noise intensity(9). Moreover, in contrast to th
expressions(6), a direct use of the adiabatic approximation in Eqs.(3) and (4)reduces the fluctuational addition
in Eq. (5) to the forms:̃ε ≡ (I

1/2
ε + I

1/2
T σ )d(σ ), T̃ ≡ (I

1/2
T − I

1/2
ε σ )d(σ ). The latter is obviously erroneous sin

the effective noise of the temperatureT̃ disappears entirely for the stressσ = √
IT /Iε . The reason for such

contradiction is that the Langevin equation does not permit the use of usual analysis methods (see[19]).
To continue in the usual way, let us write the Fokker–Planck equation related to the Langevin equation(7):

(11)
∂P (σ, t)

∂t
= ∂

∂σ

{
−f (σ)P (σ, t) + ∂

∂σ

[
I (σ )P (σ, t)

]}
.

At steady state, that is the single considered case, the probability distributionP(σ, t) becomes a time-independe
function P(σ). Consequently, under the usual condition, that the expression in braces of the right-hand side
Eq.(11) is equal to zero, this leads to a stationary distribution

(12)P(σ) = Z−1 exp
{−U(σ)

}
,

whereZ is a normalization constant. The effective potential

(13)U(σ) = ln I (σ ) −
σ∫

0

f (σ ′)
I (σ ′)

dσ ′, f ≡ −∂V

∂σ
,

is determined by the synergetic potentialV (Eq. (8)) and the noise intensityI (σ ) (Eq. (9)) [20]. Combining these
expressions, one can find the explicit form ofU(σ), which is too cumbersome to be reproduced here. The equ
defining the locations of the maximums of the distribution functionP(σ)

(14)(1− g)x3 + g(2− Te)x
2 − 2g2IT x + 4g2(IT − Iε) = 0, x ≡ 1+ σ 2,

is much simpler. According to Eq.(14) maximums are insensitive to changes in the intensity of the noiseIσ of
the stressσ , but they are determined by the valueTe of the friction surfaces temperature and the intensitiesIε and
IT of the noises of the strainε and the lubricant film temperatureT , which acquire the multiplicative character
Eq. (9). Hence, for simplicityIσ can be set equal to 0 and Eqs.(8), (9), and (13)give the following expression fo
the effective potential:

U(σ) = 1

2g2IT

{
i
[
i(1− g) − g(2− Te)

]
ln

∣∣∣∣1+ σ

i

∣∣∣∣ + (1− g)
σ 2

2
+ [

g(2− Te) − i(1− g)
]
σ

}

(15)+ ln
[
g2d2(σ )

(
Iε + σ 2IT

)]
, i ≡ Iε

IT

− 1.

3. Phase diagrams

According to Eq.(14)the effective potential(15)has a minimum atσ = 0 if the temperatureTe does not excee
the critical level

(16)Tc = 1+ g−1 + 2g(IT − 2Iε)

whose value increases at increasing thecharacteristic value of shear viscosityη0 and the temperature noise intens
but decreases with growth of the shear modulusG of lubricant and the strain noise. Here, the lubricant film d
not melt. The solutions of Eq.(14)

(17)σ 2± = 1

2

[
g(Te − 2)

1− g
− 3±

√(
g(Te − 2)

1− g
+ 7

)(
g(Te − 2)

1− g
− 1

)]
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are obtained on the line defined by expression(16)after elimination of the rootσ 2 = 0. At Te < T 0
c = 2(1+2g−1)/3

the rootsσ± are complex, starting fromTe = T 0
c they become zero, and atTe > T 0

c one has real magnitude
σ+ = −σ− 
= 0 that implies lubricant film melting. If equality(16) is fulfilled, the rootσ = 0 corresponds to th
minimum of the effective potential(15)atTe < T 0

c , whereas atTe > T 0
c this root corresponds to the maximum, a

the rootsσ±—to symmetrical minimums.
Now, let us find another condition for the stability of the rootsσ± in the simple caseIε = 0. Setting the discrim

inant of Eq.(14)equal to zero, one gets the equations

(18)IT = 0, I2
T − IT

{
27

2g

[
1− g

g
+ 2− Te

3

]
− (2− Te)

2

8(1− g)

}
− (2− Te)

3

2g(1− g)
= 0,

the second of which gives

(19)

2IT = 27

2g

[
1− g

g
+ 2− Te

3

]
− (2− Te)

2

8(1− g)
±

{[
27

2g

(
1− g

g
+ 2− Te

3

)
− (2− Te)

2

8(1− g)

]2

+ 2(2− Te)
3

g(1− g)

}1/2

.

This equation defines a bell-shaped curveTe (IT ), which intersects the horizontal axis at the point

(20)IT = 9(3− 4g) + 8g2

2g2(1− g)
+

{[
9(3− 4g) + 8g2

2g2(1− g)

]2

+ 16

g(1− g)

}1/2

and vertical axis at the pointTe = 2. It has a maximumTe = 2g−1 at

(21)IT = 2(1− g)

g2 .

It is easy to see that line(16) touches the curve(19)at the tricritical point

(22)Te = T 0
c = 2

3

(
1+ 2g−1), IT = 1− g

6g2 .

Thus, this point addresses to the appearance of real rootsσ± 
= 0 (17)of Eq.(14)that means lubricant film melting
Let us now consider the more general case of two multiplicative noisesIε , IT 
= 0. The condition of extremum

of the effective potential(15)splits into two equations, one of which is simplyσ = 0, and the other one is given b
Eq. (14). As mentioned above, the analysis of the latter indicates that the line of existence of the zero solution
defined by expression(16). The tricritical pointT has the coordinates

(23)Te = 2

3

(
1+ 2g−1 − 2gIε

)
, IT = 1

6g

(
g−1 − 1+ 8gIε

)
.

The phase diagrams for the fixed intensitiesIε are shown inFig. 1. Physically, one should take into considerat
that lines 1 and 2 define the thresholds of stability loss ofthe system, i.e., boundariesof domains corresponding t
the different forms of effective potential(15). Above straight line 1 the potential(15)has a minimum only at non
zero stressσ and the system manifests a stable sliding friction (SF) inherent in the liquidlike phase of lub
Below curve 2 the potential(15)has a minimum only atσ = 0 and the dry friction (DF) occurs that is characterist
for the solidlike state of lubricant film. Between these lines the potential(15)has minimums at zero and non-zeroσ

and the region of the stick-slip friction (SS) mode is realized, i.e., mode that is characterized by periodic tra
between two dynamic states during steady-state sliding. Itis relevant to an intermittent regime of lubricant meltin
where a mixture of both solidlike and liquidlike phases exists. ForIε < (1+ g−1)/4g the situation is generally th
same as in the simple caseIε = 0 (seeFig. 1a). At Iε > (1+ g−1)/4g the sliding friction is possible even for sma
values of temperatureTe of friction surfaces and noise intensitiesIT of the lubricant film temperature (Fig. 1b).
According to(23) the tricritical point lies on theIT -axis atIε = (1 + 2g−1)/2g, and if the noise intensityIε is
larger than the critical valueIε = 2g−2, the stable dry friction domain disappears (seeFig. 1c). It is worth noting
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Fig. 1. Phase diagrams atg = 0.5 and fixed valuesIε : (a) Iε = 1.2; (b) Iε = 5; (c) Iε = 8. Lines 1 and 2 define the boundary of stability doma
of sliding (SF), dry (DF), and stick-slip (SS) friction (T is the tricritical point,C is the critical point).

that this domain decreases with increase of the shear modulus valueG and decrease of the characteristic value
shear viscosityη0.

The consideration of the additive noises ofσ , ε, andT shows that the stochasticity influence is non-esse
for the shear component of elastic stress tensor and it is crucial for both the corresponding component of s
the lubricant film temperature. The boundary of the domain of sliding friction is fixed by the equality for the nois
intensities

(24)IT = 2Iε − 1+ g

2g2 ,

following from Eq. (14) at the conditionsx = 1 (σ = 0) andTe = 0. According to Eq.(24) in absence of the
temperature noise the lubricant melting occurs if the noise intensity of the shear strain component exceeds
value

(25)Iε0 = 1+ g

4g2 ,

corresponding to the pointO in Fig. 2. The increase of both the shear strain and the temperature noises cau
lubricant melting if their intensities are bounded by condition(24). The domain of the stick-slip friction appea
with further increase of these intensities above magnitudes

(26)Iε1 = 2+ g

2g2 , IT 1 = 3+ g

2g2
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Fig. 2. Phase diagram for the system withTe = 0, g = 0.5, andIε , IT 
= 0.

at the tricritical pointT in Fig. 2. Such an intermittent behavior is realized within the region located above st
line (24)and outside the curve that is determined by

(27)Iε = IT

[
1+ g

3(1−g)

]
+ 4g

27(1− g)2 −
{

2g2

27(1− g)

[
4

3(1−g)2

(
2

9(1− g)
+ IT

)
+ 2I2

T

1− g
+ I3

T

]}1/2

.

If the noise intensity of the shear strain exceeds the valueIε2 defined by(27) with the temperature noiseIT 2 =
2(3 − g)/g2 (the pointC in Fig. 2), the dry friction region disappears at all. The curve(27) intersects the vertica
axis at the point

(28)IT 3 = 1

2

{
27(1− g)

2g2
+ 9

g
− 1

2(1− g)
+

[(
27(1− g)

2g2
+ 9

g
− 1

2(1− g)

)2

+ 16

g(1− g)

]1/2}

above that the dry friction does not take place.The corresponding phase diagram depicted inFig. 2 has a very
non-trivial form (especially, within the domainIε1 � Iε � Iε2).

4. Summary

The above consideration of the thermal and elastic fields noise influence on the solid–liquid transition of u
lubricant film permits to define the domains of dry, sliding, and stick-slip friction modes in the phase dia
So that, an evidence of the phase diagram complication is obtained due to studied fluctuations. Depending
the initial conditions the growth of lubricant film’s temperature noise can decrease or increase friction, but t
growth of elastic shear strain noise increases the sliding friction region only. It is shown that dry friction dom
bounded by relatively small values of the confining walls temperature and the noise intensities of lubricant stra
and temperature (seeFigs. 1 and 2). Thus, used here approach predicts the possibility for controlling of fricti
behavior.

Above the concept of dynamical shear melting of the ultrathin lubricant film has been used[10,11]. In accor-
dance with it the stick-slip friction can be described and such melting is represented as a result of action o
field of shear stress component caused by the heating of friction surfaces above the critical value. The essentia
limitation of this approach is the fact that stick-slip motion I studied was independent of the way in whi
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system was driven, i.e., elasticity and mass of the confining walls, although for such friction mode the me
dependence is crucial. However, it is worth noting that here the temperature of the confining wallsTe plays a role
of the parameter of external influence and the friction force is supposed to be decreasing with increasing
at the contactV = l∂ε/∂t .
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