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Melting of an ultrathin lubricant film in the course
of friction between atomically smooth solid surfaces
with allowance for additive noise of shear stress and
strain as well as of temperature is described by the Lan-
gevin equation [1, 2]

(1)

where 

 

σ

 

 is the shear stress (which is an order parame-
ter) and 

 

τ

 

σ

 

 is its relaxation time. For 

 

σ

 

 = 0, the lubricant
is solidlike, while the case 

 

σ

 

 

 

≠

 

 0 corresponds to its liq-
uidlike state [3]. In accordance with the new friction
chart for the boundary regime [4], an increase in stress,

(2)

leads to an increase in the viscous friction force,

(3)

where

 

 V

 

 is the velocity of a block, 

 

h

 

 is the film thick-
ness, 

 

η

 

eff

 

 is the effective viscosity, and 

 

A

 

 is the contact
area. Comparing relations (2) and (3), we obtain the fol-
lowing expression for velocity in terms of stress:

(4)

in other words, the total friction force decreases upon
an increase in stresses since the velocity of the moving
surfaces increases (the lubricant melts).
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Generalized force 
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) and effective noise intensity

 

I

 

(

 

σ

 

) are given by the equalities

(5)

Here, 

 

T

 

e

 

 is the temperature of friction surfaces; 

 

g

 

(

 

σ

 

) =
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/
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 const is the ratio of the shear modulus to its
characteristic value; and 

 

I

 

σ

 

, 

 

I

 

ε

 

, and 

 

I

 

T

 

 are the intensities
of stress, strain, and temperature noise, respectively.
Function 

 

ξ

 

(

 

t

 

) in Eq. (1) is a 

 

δ

 

-correlated stochastic
source (white noise). Its moments are defined as

(6)

where 

 

D

 

 is the integral of the correlation function,
which plays the role of the source intensity. The distri-
bution of the values of 

 

ξ

 

(

 

t

 

) over 

 

ξ

 

 is Gaussian [5]:

(7)

Here, 

 

µ

 

2

 

 is the second moment of the source,

(8)

which diverges as 

 

D

 

/

 

τ

 

, where 

 

τ

 

  0 is the width of the

 

δ 

 

function, which assumes a nonzero value for all real
physical systems.
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Abstract

 

—Melting of an ultrathin lubricant film during friction between atomically smooth surfaces is studied.
Additive noise of shear stress and strain as well as of film temperature is introduced and the phase diagram is
constructed. On the diagram, the noise intensity for this temperature and the temperature of friction surfaces
determine the regions of sliding, dry, and stick-slip friction. As a result of numerical analysis of the Langevin
equation for various regions of the diagram, time series of stresses are constructed, which make it possible to
explain the experiment on friction, in which intermittent motion is observed. Lubricant melting due to dissipa-
tive heating of friction surface is considered and the experimental time dependences of friction force are inter-
preted.
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Langevin equation (1) is in one-to-one correspon-
dence with the Fokker–Planck equation (FPE) in the Ito
form [6],

(9)

The distribution of solutions to Eq. (1) becomes sta-
tionary after some time and its explicit form can be
found from Eq. (9) for 

 

∂

 

P

 

(

 

σ

 

, 

 

t

 

)/

 

∂

 

t

 

 = 0:

(10)

The resultant distribution is controlled by the nor-
malization constant

(11)

and the effective potential

 

1 

(12)

The equation defining the positions of maxima of
function P(σ) has the form

(13)

1 In contrast to [1], the lower integration limit in our case is –∞ and
not 0 since negative stresses will also be considered below.
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Thus, the shape of the P(σ) distribution is indepen-
dent of noise intensity Iσ.

For a fixed intensity Iε, the phase diagram has the
form shown in Fig. 1, where curves I and II correspond
to stability loss limits for the system. Above straight
line I defined by the equation

(14)

the most probable value of stress σ ≠ 0 and the lubricant
is in the liquidlike phase ensuring stable sliding friction
(SF) state. Below curve II, which is tangential to
straight line I at tricritical point T with coordinates

(15)

function P(σ) has a peak only at point σ = 0 and dry
friction (DF) typical of solidlike lubricant takes place.
Between these curves, the peaks of P(σ) correspond to
zero and nonzero value of stresses; i.e., this is the
region of stick-slip (SS) friction, where periodic transi-
tions between these dynamic friction regimes occur.
This is typical of the intermittent conditions during
lubricant melting, where a mixture of solidlike and liq-
uidlike states exists. In accordance with expressions
(15), lubricant can melt even at zero temperature Te of
the friction surfaces if the intensity of strain fluctua-
tions exceeds the critical value

It follows hence that this value decreases upon an
increase in the stochastic source intensity D.

The phase diagram of states of the system is con-
structed in accordance with the analytically determined
distribution P(σ). We will carry out such a procedure
analyzing Eq. (1) numerically. This is due to the fact
that time dependences of physical quantities are usually
measured in experiments. In addition, this procedure
makes it possible to demonstrate once again that the
FPE was chosen correctly.

Multiplying Eq. (1) by dt, we obtain the Langevin
differential equation

(16)

where dW(t) = W(t + dt) – W(t) ≡ ξ(t)dt is a Wiener pro-
cess exhibiting the properties of white noise [7]:

(17)

To solve Eq. (16) numerically, we will employ the
Euler method. Having measured time in the τσ units and
taking into account the definition of a discrete analog of
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Fig. 1. Phase diagram for g = 0.8, Iε= 0.8, and D = 0.8 with
the regions of sliding (SF), dry (DF), and stick-slip (SS)
friction (T is the tricritical point).
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random force differential dW(t) ≡ Wn, we obtain
the iterative procedure for calculating the time series of
stresses:

(18)

The equation is solved on time interval t ∈ [0, T].
For a preset number N of iterations (number of points
of the time series), the time increment is defined as ∆t =
T/N. Force Wn possesses the following properties:

(19)

A random force possessing the properties of white
noise can be correctly defined using the Box–Muller
model [8]:

(20)

where µ =  and Wn is an absolutely random num-
ber with properties (19) and (7). Pseudorandom num-
bers r1 and r2 are repeated after a certain interval.

Trajectories σ(t) for various regions on the phase
diagram are shown in Fig. 2. The upper part of the fig-
ure corresponds to point 1 in Fig. 1 (SF). One can see
periodic transitions between positive and negative sta-
ble values of stress of the same absolute magnitude.
This regime corresponds to the liquidlike structure of
the lubricant and a small value of friction force. We
must assume that reverse motion (motion of surfaces
displaced in the opposite direction) takes place for neg-
ative values of stress; strain in this case is also negative.
We can disregard the negative region, assuming that it
is deprived of physical meaning, and suppose that
stresses begin to increase after attaining zero value,
which allows us to analyze the behavior of |σ|. The mid-
dle part of the figure corresponds to point 2 in Fig. 1
(SS). It shows frequent transitions between zero and
nonzero values of stress, which corresponds to stick-
slip friction, in which the friction force changes
abruptly during motion. Since these transitions are very
frequent, this situation corresponds to the intermittent
conditions, when a mixture of liquidlike and solidlike
phases exists in the lubricant [2]. The lower part of the
figure corresponds to point 3 in Fig. 1 (DF). In this case,
oscillations occur in the vicinity of σ = 0, which corre-
sponds to the solidlike structure of the lubricant and the
highest value of the friction force.

Figure 3a shows probability distribution (10) for the
points indicated on the phase diagram, while Fig. 3b
shows analogous distributions obtained numerically by
solving the Langevin equation and corresponding to the
trajectories in Fig. 2. It can be seen that the correspond-
ing dependences P(σ) perfectly match in both cases,
which confirms the correspondence of the FPE in Ito
form (9) to iterative procedure (18). Curve 1 corre-
sponds to the region of sliding friction on the phase dia-
gram, where only the nonzero maximum of P(σ) exists;

∆t

σn 1+ σn f σn( )∆t I σn( )∆tWn.+ +=

Wn〈 〉 0, WnWn'〈 〉 0, Wn
2〈 〉 2D.= =

Wn µ 2 r1ln– 2πr2( ), ricos= 0 1 ],,(∈

2D

curve 2 corresponds to the stick-slip friction region,
where zero and nonzero maxima exist; and curve 3 cor-
responds to the region of dry friction with a single zero
maximum of P(σ).

The experimental dependences of the friction force
on the velocity of mica surfaces being displaced,
between which hydrocarbon and silicon liquids (cyclo-
hexane, octamethyl cyclotetrasiloxane, n-octane, n-tet-
radecane, and branched isoparaffin-2-methyl octade-
cane) were placed, are given in [9]. According to these
curves, the friction force first increases linearly and
then the stick-slip regime sets in, in which the friction
force varies periodically, ensuring intermittent motion.
In the approach proposed in [9], such a behavior can be
explained as follows. At the first stage of motion, the
elastic component of stress σ predominates and the
lubricant is solidlike (the lower part of Fig. 2). In this
region, Hooke’s law is observed and the total friction
force increases. For a certain critical value of velocity,
transitions between the solidlike and liquidlike struc-
tures (in the latter structure, the viscous component of
stress dominates) of the lubricant take place due to the
“shear melting” effect [10] (middle part of Fig. 2).
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Fig. 2. Time series of stresses σ(t) corresponding to the
regimes represented by points in Fig. 1 for Iσ = 0.1. The
upper part corresponds to point 1 (IT = 1, Te = 3.8, SF), the
middle part corresponds to point 2 (IT = 6,Te = 2.5, SS), and
the lower part corresponds to point 3 (IT = 3, Te = 0.5, DF).
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In addition, the time dependences of the friction
force, on which the melting of the lubricant is shown
for constant shear rate are depicted (see, for example,
[9, 11]), are measured experimentally. It should be
noted that friction is always accompanied by dissipa-
tion of energy of translatory motion of rubbing sur-
faces, which leads to their heating. The dissipation is
the stronger the higher the value of the total friction
force; consequently, for the solidlike state of the lubri-
cant, the surfaces are heated at a higher rate than in the
case of the liquidlike state of the lubricant. The change
in the temperature of the surfaces becomes weaker and
weaker with time due to the increase in the amount of
energy liberated to the environment until the equilib-
rium value Te sets in. To approximate the increase in the
temperature of rubbing surfaces with time, we can use
the exponential dependence, which makes it possible to
take into account these peculiarities,

(21)Te t( ) Te
0 1 Bt–( )exp–( ),=

where  is the value of Te being stabilized and B is the
constant determining the rate of temperature increase at
the initial stage.

Figure 4 shows the solution σ(t) of the Langevin
equation taking formula (21) into account. The upper
part shows dependence (21). In accordance with the
phase diagram (see Fig. 1), point A corresponds to the
temperature of transition from dry friction (DF) to
stick-slip (SS) regime. At the temperature depicted by
point B, a further transition to sliding friction (SF) takes
place. The lower part shows the evolution of stresses
σ(t), where three temporal regions are singled out:
region I (DF), II (SS), and III (SF). In the first region,
the friction force assumes the maximal value or
increases; in the second region, stick-slip motion takes
place; while in the third region, the friction force
decreases. The figure is in good agreement with exper-
imental data obtained in [11, 12].
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