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INTRODUCTION

Since smooth solid surfaces with a thin lubricant
film in between are widely used in various fields of
technology, sliding friction remains a subject of exten-
sive research [1]. In this work, the author describes a
transition mode of friction, which is observed in the
case of an ultrathin (less than four molecular diameters
thick) lubricant film between smooth or rough surfaces,
high loads, and low shear rates. Experiments with mica,
quartz, or metal oxide surfaces and also with monomo-
lecular layers of surfactants with organic liquids or
water solutions in between have shown that slide causes
transformations of one dynamic phases into others
[2, 3]. These transformations show up as intermittent
(stick–slip) friction [4–6], which is characterized by
occasional transitions between two or more dynamic
states in the course of steady slide and is the major rea-
son for wear and failure of rubbing parts. Thus, molec-
ularly thin lubricant films experience one or more types
of transition, which gives rise to different modes of
intermittent motion.

The reason for such anomalies in boundary friction
has been elucidated, in particular, by experimentally
studying the rheological properties of the lubricant film
[2, 3]. In those and similar studies, the lubricant is con-
sidered as an elastoviscous medium with a nonzero
thermal conductivity. In [6], the behavior of the
ultrathin lubricant film observed in experiments is
treated in terms of the Landau–Ginzburg equation, in
which the order parameter governs shear melting and

solidification and a dynamic phase diagram showing
the domains of sliding, stick–slip, and dry friction in
the film temperature–film thickness coordinates was
constructed.

In papers [7–9] extending work [6], an approach
was developed according to which the transition of the
ultrathin lubricant film from the solid-like to liquid-like
phase is a result of thermodynamic and shear melting.
A detailed analytical description of these processes was
given under the assumption that they result from the
self-organization of shear stress and strain fields, as
well as of the lubricant temperature. The notion of addi-
tive noise of these quantities was introduced; phase dia-
grams where fluctuation intensities and the temperature
of rubbing surfaces specify the domains of sliding,
stick–slip, and dry friction were constructed; and the
conditions under which the different friction modes are
established in the system under the self-organized crit-
icality regime were found.

However, while the lubricant condition is apparently
controlled, as a rule, by the temperature, the issue of
how correlated temperature fluctuations influence the
friction process remains open. In this work, the author,
invoking the Lorentz model of elastoviscous medium
[7–9], shows that internal temperature fluctuations,
which are described by the Ornstein–Uhlenbeck pro-
cess, complicate the dynamic phase diagram. The
steady-state regime of such a system is considered both
in the case of continuous melting (melting of the amor-
phous lubricant; Section 3) and with regard to the
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deformation defect of the shear modulus (melting of the
crystalline lubricant; Section 4). Also, the effect of the
rubbing surface temperature on shear stresses arising
between rubbing (moving) surfaces is considered, since
these stresses are responsible for the phase state of the
lubricant. As a result, different modes of stick–slip fric-
tion are predicted to occur in the system. The effect of
fluctuation correlation time on the phase diagram is dis-
cussed.

1. BASIC EQUATIONS

In [7], the authors treated an elastoviscous medium
with a nonzero thermal conductivity in rheological
terms and derived a set of kinetic equations describing
the correlated behavior of shear stresses 

 

σ

 

, strain 

 

ε

 

, and
temperature 

 

T

 

 in an ultrathin lubricant film during fric-
tion between atomically smooth mica surfaces. The
basic assumption of he approach used in [7] is that the
relaxation equation for 

 

σ 

 

has the form

(1)

Here, the first term on the right stands for Debye relax-
ation for time 

 

τ

 

σ

 

 ≡ η

 

σ

 

/

 

G

 

, where 

 

η

 

σ

 

 is the effective vis-
cosity, 

 

G

 

 

 

≡

 

 

 

G

 

(

 

ω

 

)

 

|

 

ω → ∞

 

 is the unrelaxed shear modulus,
and 

 

ω 

 

is the circular frequency of a periodic external
action. By substituting 

 

∂

 

ε

 

/

 

∂

 

t

 

 for 

 

ε

 

/

 

τ

 

σ

 

, kinetic equation
(1) reduces to a Maxwell-type expression for an elasto-
viscous medium, which is widely used in the theory of
boundary friction [1]. In the stationary case,  = 0,
Eq. (1) passes into Hooke’s law, 

 

σ

 

 = 

 

G

 

ε

 

.
The relaxation behavior of an elastoviscous lubri-

cant during friction is also described by the Kelvin–
Voigt equation [10]

(2)

where 

 

τ

 

ε

 

 is the strain relaxation time and 

 

η 

 

is the shear
viscosity. The second term on the right describes the
flow of a viscous fluid under the action of shear
stresses. In the stationary case,  = 0, we arrive at an
expression similar to Hooke’s law, 

 

σ

 

 = 

 

G

 

ε

 

ε

 

, where 

 

G

 

ε

 

 

 

≡
η

 

/

 

τ

 

ε

 

 

 

≡

 

 

 

G

 

(

 

ω

 

)

 

|

 

ω → 0

 

 is the relaxed value of the shear mod-
ulus. Since formally Eq. (1) does not reduce to Kelvin–
Voigt equation (2) [10, 11], it is assumed here that
effective viscosity 

 

η

 

σ

 

 

 

≡ τ

 

σ

 

G

 

 differs from real viscosity

 

η

 

. In addition, we will use simple approximations for
the respective quantities: 

 

G

 

ε

 

(

 

T

 

), 

 

G

 

(

 

T

 

), 

 

η

 

σ

 

(

 

T

 

) = const
and 

 

η

 

 = 

 

η

 

0

 

(

 

T

 

/

 

T

 

c

 

 – 1)

 

–1

 

, where 

 

η

 

0

 

 

 

≡ η

 

(

 

T

 

 = 2

 

T

 

c

 

) is the
characteristic value of the viscosity. The reason for
such approximations is that 

 

G

 

ε

 

, 

 

G

 

, and 

 

η

 

σ

 

 depend on
temperature insignificantly and real 

 

η 

 

diverges as the
temperature decreases to its critical value 

 

T

 

c

 

 [12]. Taken
together, Eqs. (1) and (2) represent a new rheological
model. Note that the rheological properties of lubricant
films are studied experimentally, which allows con-
struction of phase diagrams (see, e.g., [2, 3]).

τσσ̇ –σ Gε.+=

σ̇

ε̇ ε/τε– σ/η,+=

ε̇

 

According to the synergetic concept [13, 14], the set
of Eqs. (1) and (2), which contain order parameter 

 

σ

 

,
conjugated field 

 

ε

 

, and control parameter 

 

T

 

, should be
complemented by a kinetic equation for temperature.
Using the basic relationships of the elasticity theory [7,
11], one can derive a heat conduction equation in the
form

(3)

Here, 

 

ρ 

 

is the lubricant density; 

 

c

 

V

 

 is the specific heat at
constant volume; 

 

κ

 

 is the thermal conductivity; 

 

l

 

 is the
heat conduction scale; 

 

T

 

s

 

 is the temperature of atomi-
cally smooth mica surfaces; and 

 

σ

 

 = 

 

σ

 

el

 

 + 

 

σ

 

V

 

 is the total
stress, which is the sum of the elastic, 

 

σ

 

el

 

, and viscous,

 

σ

 

v

 

, components. The first term on the right of (3)
describes heat transfer from the lubricant film o the rub-
bing surface. The second one takes into account the dis-
sipative heating of the stress-induced viscous flow and
a heat source due to the reversible mechanocaloric
effect, for which 

 

T

 

(

 

∂

 

σ

 

el

 

/

 

∂

 

T

 

)  

 

≡

 

 

 

σ

 

el

 

 in the linear
approximation.

Let 

 

σs = (ρcVη0Tc/τT)1/2, εs = σs/G0 ≡
(τε/τT)1/2(ρcVTcτε/η0)1/2, and Tc be the units of measure
for variables σ, ε, and T, respectively (here, G0 = η0/τε,
τT ≡ ρl2cV/κ  is the time of heat conduction). Then, upon
substitution of derivative  (see (2)) into (3), basic
equations (1)–(3) take the form

(4)

(5)

(6)

where constant g = G/G0. Equations (4)–(6) are for-
mally coincident with the Lorentz synergetic system
[13, 14], which is used for description of both thermo-
dynamic and kinetic transformations. In this work, the
author takes into consideration the effect of tempera-
ture fluctuations on the lubricant evolution by introduc-
ing stochastic source λ(t) into Eq. (6). This source rep-
resents the Ornstein–Uhlenbeck process [15],

(7)

where I is the fluctuation intensity and τλ is the time of
fluctuation correlation.

Following [16], let us clarify the physical meaning
of quantity I. The time correlation of the lubricant
dimensionless temperature depends on the average
value of product ϕ(τ) = 〈∆T(t)∆T(t + τ)〉, where ∆T(t) is
the difference between the current and mean tempera-
tures. Under the assumption that fluctuations ∆T are
quasi-stationary, function ϕ(τ) takes the form

ϕ(τ) = 〈(∆T)2〉exp(–ζ|τ|),

ρcVṪ
κ
l2
--- T s T–( ) σε̇.+=

ε̇ ε̇

ε̇

τσσ̇ σ– gε,+=

τεε̇ ε– T 1–( )σ,+=

τTṪ T s T–( ) σε– σ2 λ t( ),+ +=

λ t( )〈 〉 0, λ t( )λ t'( )〈 〉 I
τλ
---- t t'–

τλ
-------------–⎝ ⎠

⎛ ⎞ ,exp= =
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where 1/ζ is the relaxation time to equilibrium. Suppos-
ing that the time instants appearing in the above formu-
las are related as t + τ = t' and that the mean square of
temperature fluctuations is 〈(∆T)2〉 = T2/cV, we get
〈∆T(t)∆T(t')〉 = (T2/cV)exp(–ζ|t' – t|). Comparing this
expression with the second equality in (7) yields

(8)

Thus, noise intensity I depends on the temperature
and specific heat cV of the lubricant. At first glance, it
appears that there exists a one-to-one correspondence
between I and Ts in the phase diagrams Ts(I) shown
below and so a trajectory, instead of domains, must
exist in the given coordinates, the motion along which
describes the evolution of the system. However, such is
not the case, since Ts is the temperature of a thermostat,
which, varying arbitrarily, does not uniquely specify
temperature T. One can only suppose that, due to the
self-organization of the system, a certain value of Ts
will be assigned different values of T and, according to
(8), different values of intensity I at different time
instants. In addition, I varies as a result of time variation
of cV. Thus, it is appropriate to speak of the existence of
the phase diagram. Intensity I can also be varied by
varying parameter ζ, which characterizes a specific
system.

However, in this paper, temperature fluctuations are
meant in the wider sense. The fact is that thermal
actions are, as a rule, exerted by external stochastic
sources. In addition, noise can equally be treated in
terms of fluctuations of T or Ts. Such an interpretation
is often used in simulation of noise in real physical sys-
tems [15].

In [7], melting of an ultrathin lubricant film between
atomically smooth rubbing surfaces is viewed as a
result of spontaneously arising shear stresses causing
plastic flow when the rubbing surface is heated above
critical value Tc0 = 1 + g–1. The initial reason for self-
organization is positive feedback between T (and σ)
and ε [5]. This feedback is due to the temperature
dependence of the shear viscosity causing its diver-
gence. On the other hand, the negative feedback
between σ (and ε) and T in (6) is of great importance,
since it makes the system stable.

According to such an approach, the lubricant repre-
sents a high-viscous medium that behaves as an amor-
phous solid, i.e., has a high effective viscosity and is
still characterized by a yield stress [2, 3, 11]. The solid-
like state of the lubricant corresponds to zero shear
stresses (σ = 0), since Eq. (4) describing the elastic
properties in the stationary case (  = 0) may be omitted
in this case. Equation (5), which contains viscous
stresses, reduces to the Debye law, which represents the
relaxation of the shear strain for time τε. Finally, at
λ(t) = 0, heat conduction equation (6) takes the form of
the simplest expression for temperature relaxation,

λ t( ) ∆T t( ), τλ 1/ζ, I T2/cVζ.= = =

σ̇

which is free of terms describing dissipative heating
and the mechanocaloric effect of the viscous fluid.

In the case of nonzero stresses σ, Eqs. (4)–(6)
describe the properties inherent in the liquid-like state
of the lubricant. Moreover, in the absence of shear
strains, the rms displacement of molecules (atoms),
according to [6], is given by 〈u2〉 = T/Ga, where a is the
lattice constant. The rms displacement due to shear is
found from the expression 〈u2〉 = σ2a2/G2. The total rms
displacement is the sum of these expressions provided
that temperature fluctuations and stresses are indepen-
dent from each other. This means that the lubricant
melts as a result of heating and under the action of
stresses generated by solid rubbing surfaces. Such a
view is consistent with the consideration of solid-like
state instability in terms of the theory of dynamic shear
melting in the absence of temperature fluctuations [6].
It was shown [17] that the plastic flow of a lubricant
layer takes place when it contains elastic stresses. In
this case, shear stresses decrease the shear modulus of
the lubricant. Consequently, the friction force decreases
with increasing relative velocity V = l∂ε/∂t of rubbing
surfaces, since friction causes shear stresses to grow,
according to the Maxwell-type stress–strain relation-
ship ∂σ/∂t = –σ/τσ + G∂ε/∂t. We will assume that, as the
temperature rises, the lubricant film becomes more liq-
uid-like and the friction force declines because of a
decrease in the molecular hop activation energy.

In this work, the author studies the effect of stochas-
tic source λ(t) on the evolution of stress σ(t). According
to experimental data for organic lubricants [2, 3, 6], the
stress relaxation time under normal pressure is tσ ~
10−10 s and grows with pressure by several orders of
magnitude. Since the ultrathin lubricant film is less than
four molecular layers thick, the temperature relaxes to
Ts for a time satisfying the inequality τT � τσ [7].
Therefore, we assume that the adiabatic conditions

(9)

under which lubricant temperature T varies with the
shear components of stress σ and strain ε, are met.
Then, one can separate out a small parameter in Eq. (6)

and put τT  = 0. Eventually, we come to an expression
for the temperature,

(10)

Let us simplify the set of Eqs. (4), (5), and (10) by
reducing it for a single equation in shear strength σ(t).
To this end, ε and T should be expressed through σ. Dif-
ferentiating an expression in strain ε derived from (4)
with respect of time, we obtain an expression in . Sub-
stituting the expression for ε, the resulting expression
for , and (10) into (5) yields an evolutionary equation
in the form of the canonic nonlinear equation for a sto-
chastic oscillator of the van der Pol oscillator type,

(11)

τσ τε≈  � τT ,

Ṫ

T T s σε– σ2 λ t( ).+ +=

ε̇

ε̇

mσ̇̇ γ σ( )σ̇+ f σ( ) φ σ( )λ t( ),+=
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where parameter m, friction coefficient γ, force f, and
noise amplitude φ are given by

(12)

2. EFFECTIVE POTENTIAL METHOD

Let us find the distribution of the system with time t
in the phase space that is parametrized by generalized
coordinate σ and momentum p ≡ m . To this end, we
will make use of the effective potential method that has
been developed in [18–20]. Euler equation (11) can be
represented in the Hamiltonian form as follows:

(13)

Statistical investigation implies determination of
function Π(σ, p, t), which is the probability density of
the presence of stress σ and its derivative  at given
time instant t. In other words, it is λ-averaged (λ is the
noise intensity) distribution function ρ(σ, p, t) of solu-
tions to system (13),

(14)

We assume that function ρ = ρ(σ, p, t) satisfies the
continuity equation

(15)

Substituting equalities (13) into (15), we come to
the Liouville equation

(16)

with operators

(17)

In terms of the interaction representation, a micro-

scopic distribution function is given by ϖ = ρ, so

that Eq. (16) takes the form ∂ϖ/∂t = ϖ, where  ≡

λ( ). Use of the accumulant expansion method
[21] leads to the linear differential kinetic equation

∂〈ϖ〉(t)/∂t = [ (t) (t')〉dt']〈ϖ〉(t) up to terms

O( ). The transition from the interaction representa-

m
τστε

g
----------, γ σ( ) 1

g
--- τε τσ 1 σ2+( )+[ ],≡ ≡

f σ( ) σ T s 1– g 1––( ) σ3 g 1– 1–( ), φ σ( )– σ.≡ ≡

σ̇

σ̇ m 1– p,=

ṗ m 1– γ σ( ) p– f σ( ) φ σ( )λ t( ).+ +=

σ̇

Π σ p t, ,( ) ρ σ p t, ,( )〈 〉 .=

∂ρ
∂t
------

∂
∂σ
------ σ̇ρ( ) ∂

∂p
------ ṗρ( )++ 0.=

∂ρ
∂t
------ L̂ N̂λ+( )ρ,=

L̂
p
m
---- ∂

∂σ
------–

∂
∂p
------ f

γ
m
---- p–⎝ ⎠

⎛ ⎞ , N̂ φ ∂
∂p
------.–≡–≡

e L̂t–

�̂ �̂

e L̂t– N̂eL̂t

〈�̂
0

t∫ �̂

�̂
2

tion to the starting one yields for distribution function (14)

(18)

Since physical time t far exceeds noise correlation
time τλ, one can set the upper limit of integration equal
to infinity. Then, expanding the exponentials in (18),
we get the expression

(19)

where dissipative operator

(20)

is determined by commutators according to the recur-
rence formula

(21)

([ , ] =  – ) and by the moments

(22)

of correlation function (7). The first moments are

(23)

In the general case, further consideration is impossi-
ble; therefore, we make the simplifying assumption,
i.e., separate out small parameter � � 1, which coin-
cides with the Kubo number [21]. Putting m = �2 in
Eq. (11) and measuring the generalized momentum in
units of �, we will analyze the case of an overdamped
oscillator in which the sliding friction force exceeds the
other components by �–1 � 1 times. Then, Eqs. (13)
take the form

(24)

Accordingly, the Fokker–Planck equation (19) can
be written as

(25)

where operator  ≡ �–1  + �–2  has two components:

 ≡ –p(∂/∂σ) – f (∂/∂p) and  ≡ γ(∂/∂p)p. Dissipative

operator  is given by (17) and (20)–(22) and, up to

∂
∂t
-----Π t( )

=  L̂ λ τ( )λ 0( )〈 〉 N̂ eL̂τN̂e L̂τ–( )[ ] τd

0

t

∫+
⎩ ⎭
⎨ ⎬
⎧ ⎫

Π t( ).

∂Π
∂t
------- L̂ Λ̂+( )Π,=

Λ̂ Λ̂ n( )
, Λ̂ n( )

C n( ) N̂ L̂
n( )( )≡

n 0=

∞

∑≡

L̂
n 1+( )

L̂ L̂
n( ),[ ], L̂

0( )
N̂≡=

Â B̂ ÂB̂ B̂ Â

C n( ) 1
n!
----- τn λ τ( )λ 0( )〈 〉 τd

0

∞

∫=

C 0( ) I , C 1( ) Iτλ.= =

∂σ
∂t
------ �

1– p,
∂p
∂t
------ �

2– γ σ( ) p–= =

+ �
1– f σ( ) φ σ( )λ t( )+[ ].

∂
∂t
----- L̂–⎝ ⎠

⎛ ⎞ Π �
2– Λ̂Π,=

L̂ L̂1 L̂2

L̂1 L̂2

Λ̂
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terms of the second order of smallness, has the form

(26)

Since melting of the lubricant is characterized by
stress σ and time t, we will consider the projection of
the distribution function on the half-space (σ, t). To this
end, we pass to the Fokker–Planck equation in function
P(σ, t), using the moments of the initial distribution

Pn(σ, t) ≡ Π(σ, p, t)dp, the zeroth of which gives

the desired result. Multiplying Eq. (25) by pn and inte-
grating the result over all momenta, we arrive at the
recurrence relation

(27)

Next, applying the hierarchical approach to (27), we
write the Fokker–Planck equation. For n = 0, we get an
equation for desired function P = P0(σ, t),

(28)

Λ̂ C 0( ) γ C 1( )+( )φ2 ∂2

∂ p2
--------=

+ �C 1( )φ2 1
φ
--- ∂φ

∂σ
------⎝ ⎠

⎛ ⎞ ∂
∂p
------ p

∂2

∂ p2
--------+⎝ ⎠

⎛ ⎞– ∂2

∂σ∂p
-------------+ O �

2( ).+

pn∫

�
2∂Pn

∂t
--------- nγ Pn– �

∂Pn 1+

∂σ
--------------- nf Pn 1–+⎝ ⎠

⎛ ⎞+

=  n n 1–( ) C 0( ) γ C 1( )+( )φ2Pn 2–

+ �nC 1( ) φ2∂Pn 1–

∂σ
-------------- nφ ∂φ

∂σ
------⎝ ⎠

⎛ ⎞ Pn 1–– O �
2( ).+

∂P
∂t
------ �

1– ∂P1

∂σ
---------.–=

First-order moment P1 is given by the expression

(29)

which follows from (27) where n = 1 and terms of the
first order of smallness in � � 1 are included. Taking
into account terms of the zeroth order in � at n = 2 gives
an expression for the second-order moment P2,

(30)

As a result, the Fokker–Planck equation takes the
form

(31)

where

(32)

are the drift and diffusion coefficients, respectively.
The stationary solution of Eq. (31) yields the distri-

bution

(33)

where Z = exp{ D(1)(x)/D(2)(x)]dx} is a nor-

malizing factor.

3. CONTINUOUS TRANSFORMATION

Distribution (33) (Fig. 1) has maxima the positions
of which depend on a relation between parameters Ts,
g, I, τλ, τε, and τσ. When the temperature of rubbing sur-
faces is small, a single peak is observed at σ0 = 0, which
corresponds to the solid-like state of the lubricant and
dry friction (curve 1). As Ts grows, a maximum appears
at some point σ0 ≠ 0 meeting the steady state in which
shear stresses spontaneously arise, causing the lubri-
cant film to melt and, accordingly, the sliding friction
regime to set in (curve 2). As Ts grows further, the max-
imum at σ = 0 disappears (curve 3).

The coexistence of the maxima of P(σ), which cor-
respond to the zero and nonzero values of the stress,
manifests the regime of stick–slip motion, i.e., the
regime when dry friction from time to time changes to
sliding friction and vice versa. Such behavior is typical
of the melting of a lubricant comprising a mixture of
the solid- and liquid-like phases. According to [8, 9],

P1
�
γ
-- fP

∂P2

∂σ
--------- C 1( ) φ2∂P

∂σ
------ φ ∂φ

∂σ
------⎝ ⎠

⎛ ⎞ P––+
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

P2
C 0( )

γ
--------- C 1( )+⎝ ⎠

⎛ ⎞ φ2P.–=

∂P
∂t
------

∂
∂σ
------ D 1( )P( )–

∂
∂σ
------ D 2( )∂P

∂σ
------⎝ ⎠

⎛ ⎞ ,+=

D 1( ) 1
γ
--- f C 0( )φ2∂γ 1–

∂σ
----------– φ∂φ

∂σ
------ 2C 0( )

γ
------------ C 1( )+⎝ ⎠

⎛ ⎞–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

D 2( ) φ2

γ
----- C 0( )

γ
--------- 2C 1( )+⎝ ⎠

⎛ ⎞=

P σ( ) Z 1– D 1( ) x( )
D 2( ) x( )
-----------------

0

σ

∫ dx
⎝ ⎠
⎜ ⎟
⎛ ⎞

,exp=

σd
0

∞∫ [
0

σ∫

3210

0.6

0.4

0.2

P

σ

1

2

3

Fig. 1. Shear stress distribution function for the second-
order transition at g = 0.2, τσ = τε = 0.1; τλ = 0.2; l = 5; and
Ts = (1) 5, (2) 16, and (3) 20.
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such a situation may happen even if temperature Ts of
rubbing surfaces equals zero provided that the intensity
of additive strain fluctuations exceeds critical value Iε =
(1 + 2g–1)/2g. In this case, the behavior of the system is
alike to that observed under the conditions of self-orga-
nized criticality, when self-organization may occur
spontaneously (without external actions) [22], unlike in
the case of the phase transition.

The state of shear stress is steady when distribution
(33) reaches an extremum,

(34)

Substituting (12), (23), and (32) into (34) yields

(35)

A solution to (35) is shown in Fig. 2, which shows
that an increase in noise intensity I causes a two-valued
region to appear in the monotonic curve σ0(Ts), which
is typical of first-order transitions. Putting σ = 0 in (35),
we find a critical value of the rubbing surface tempera-
ture,

(36)

above which the system exhibits sliding friction. It is
seen that Ts0 grows with noise intensity I and correla-
tion time τλ. The stress and strain relaxation times influ-
ence Te0 inversely. In the phase diagram shown in
Fig. 3, one can separate the domains of dry friction
(DF), sliding friction (SF), and stick–slip friction (SS).
As correlation time τλ increases, so does the value of Ts
meeting tricritical point T at given noise intensity I.
Clearly, the DF domain expands in this case, while the
probability of sliding friction and stick–slip friction
decreases.

4. MAKING ALLOWANCE 
FOR THE DEFORMATION DEFECT 

OF THE SHEAR MODULUS

Actually, the shear modulus of the lubricant appear-
ing in Eq. (4) through relaxation time τσ is stress-
dependent [17]. Therefore, elastic deformation changes
to plastic deformation when the shear stress reaches
characteristic value σp not exceeding σs (otherwise,
plastic flow does not occur). To allow for the deforma-
tion defect of the shear modulus, we will make use of
the dependence τσ(σ) suggested in [7] instead of using
stress-independent τσ. Then, Eq. (4) takes the form

(37)

D 1( ) σ( )
D 2( ) σ( )
------------------ 0.=

T s
1 g+

g
------------– σ2 1 g–

g
-----------⎝ ⎠

⎛ ⎞– Iτλ–

× τε τσ 1 σ2+( )+[ ]2
2Ig τε τσ+( )– 0.=

T s0
1 g+

g
------------ τλ

2g
τε τσ+
----------------+⎝ ⎠

⎛ ⎞ I ,+=

τpσ̇ σ 1 θ 1– 1–
1 σ/α+
-------------------+⎝ ⎠

⎛ ⎞– gΘε,+=

where τp = ησ/Θ is the plastic flow relaxation time, Θ is
the hardening parameter, θ = Θ/G < 1 is the parameter
relating the slopes of the stress–strain curve in its plas-
tic and Hooke’s portions, and gΘ = G2/ΘG0 and α =
σp/σs are constants. Then, with regard to approximation
(9), the system of Eqs. (37), (5), and (6) reduces, as
before, to Eq. (11), where parameter m, friction coeffi-
cient γ, force f, and noise amplitude φ are given by

(38)

m
τpτε

gΘ
---------,≡

γ σ( ) 1
gΘ
------ τε 1 θ 1– 1–

1 σ/α+( )2
--------------------------+⎝ ⎠

⎛ ⎞ τp 1 σ2+( )+ ,≡

f σ( ) σ T s 1–
1

gΘ
------ θ 1– σ/α+

1 σ/α+
-----------------------⎝ ⎠

⎛ ⎞–≡

1917151311975 Ts
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0.8

0.4

0
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Fig. 2. Steady-state value of shear stress σ0 vs. temperature
Ts for the same parameters as in Fig. 1 and I = 0, 2, 4, and 6
(for the curves from left to right).
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Fig. 3. Phase diagram for the parameters in Fig. 1. SF, slid-
ing friction; DF, dry friction; and SS, stick–slip frictions
(T is the tricritical point).
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In accordance with the approach stated in Section 2,
condition (34), under which the state of shear stresses
becomes steady, takes the form (in view of (23), (38),
and (32))

(39)

– σ3 1
gΘ
------ θ 1– σ/α+

1 σ/α+
-----------------------⎝ ⎠

⎛ ⎞ 1– ,

φ σ( ) σ.≡

T s 1–
1

gΘ
------ θ 1– σ/α+

1 σ/α+
-----------------------⎝ ⎠

⎛ ⎞–
⎩
⎨
⎧

– σ2 1
gΘ
------ θ 1– σ/α+

1 σ/α+
-----------------------⎝ ⎠

⎛ ⎞ 1– Iτλ–
⎭
⎬
⎫

γ 2 2Iγ–

+
2Iσ

gΘ
-------- τpσ τε

θ 1– 1–

α 1 σ/α+( )3
------------------------------– 0.=

Putting σ = 0 in (39), we find an equality (similar in
sense to (36)) that specifies a limiting value of Ts at
which the maximum in distribution (33) still exists at
zero stresses corresponding to the solid-like state,

(40)

The dependences of the steady-state values of shear
stresses on the rubbing surface temperature, σ0(Ts),
which are solutions to Eq. (39), are shown in Fig. 4. It
is seen that an increase in noise intensity I gives rise to
two steady states, which correspond to the maxima of
distribution function P(σ) (see (33)) at nonzero values
of σ. Thus, one can conclude that the lubricant melts at
two steady-state values of the stress [7], which depend
on Ts, gΘ, I, θ, α, τλ, τp, and τε. The smaller one meets
the metastable liquid-like state of the lubricant (dashed
curves); the larger (continuous curves), its stable liquid-
like state. These state are separated by the unstable state

T s0
θ 1– gΘ+

gΘ
------------------- τλ

2gΘ

θ 1– τε τp+
-----------------------+⎝ ⎠

⎛ ⎞ I .+=
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Fig. 4. Steady-state value of shear stress σ0 vs. temperature
Ts for the first-order transition at τp = τε = τλ = 0.1, θ–1 = 7,
and I = 0, 2, 4, 6, and 8 (for the curves from left to right): (a)
gΘ = 0.4, α = 0.3 and (b) gΘ = 0.7, α = 0.8.
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(dash-and-dot curves), which is related to the minimum
of probability (33).

The phase diagrams inherent to this system are
depicted in Fig. 5. Here, the DF domain corresponds to
only one maximum of probability P(σ) at a zero value
of stress σ. This maximum meets the solid-like state of
the lubricant, or the dry friction conditions [7, 8]. In the
SS domain, the solid-like and liquid-like phases coex-
ist; that is, one more peak (along with that at zero σ)
arises in the P(σ) curve, which meets the melting of the
lubricant, or the sliding friction conditions. In the SS +
SF domain, the run of the P(σ) curve is most compli-
cated. Here, the solid-like state of the lubricant coexists
with the metastable and stable liquid-like states corre-
sponding to maxima of P(σ). Accordingly, the stick–
slip friction conditions may set in, under which these
three dynamic regimes occasionally pass into each
other. It should be noted that this domain, unlike the
others, cannot be realized if the parameters of the sys-
tem change (Fig. 5b). The SF domain corresponds to
stable sliding friction, i.e., to the liquid-like phase of the
lubricant at a single steady-state value of he stress. In
the intermittent MSF + SF domain, the metastable and
stable regimes of sliding friction occasionally change
each other. Remarkably, when the transition from the
SS + SF domain to the MSF + SF domain takes place,
dry friction completely disappears. As noise correlation
time τλ increases, the DF domain expands and the SF
domain shrinks.

CONCLUSIONS

Thus, it is shown that, as the temperature of rubbing
surfaces grows, the system exhibits signs of self-orga-
nization, as a result of which the sliding friction condi-
tions set in. Here, the degree of correlation of tempera-
ture variation over the lubricant is essential. If correla-
tion time τλ grows at a given temperature fluctuation
intensity, the rubbing surface temperature must
increase for the dry-to-sliding friction transition to take
place. In the case of continuous transformation at low
intensities, this transition occurs without forming the
stick–slip friction domain, i.e., proceeds as a second-
order transition (melting of the amorphous lubricant).
When the fluctuation intensity is high, the first order-
transition (melting of the crystalline lubricant) is
observed.

The first-order transition was described with allow-
ance for the deformation defect of the shear modulus. It
was shown that a change in the fluctuation intensity
and/or in the rubbing surface intensity may transfer the
system from the dry friction regime to the regime of
sliding friction, with the latter arising at two values of
the shear stress. The respective phase diagram exhibits
the domains of stick–slip friction, where metastable
sliding friction changes occasionally to stable sliding
friction.
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