SECURITY PITFALLS IN CRYPTOGRAPHY

V. V. Kontchevich, PM-71

Today all people are interested in safety of the data and reliability
of programs, but the cryptography doesn't guarantee absolute reliability — it
is possible to crack almost any algorithm.

But reality isn't that simple. Longer keys don't always mean more
security of cryptographic product.

Hackers simply exploit errors in design, errors in implementation,
and errors in installation.

A cryptographic system can only be as strong as the encryption
algorithms, digital signature algorithms, one-way hash functions, and
message authentication codes it relies on. Break any of them, and you've
broken the system.

Random-number generators are another place where cryptographic
systems often break. Good random-number generators are hard to design,
because their security often depends on the particulars of the hardware and
software. Specific random-number generators may be secure for one
purpose but insecure for another; generalizing security analyses is
dangerous.

Many systems fail because of mistakes in implementation. Some
systems don't ensure that plaintext is destroyed after it's encrypted. For
example, one product used a special window for password input. The
password remained in the window's memory even after it was closed.

It's vital to secure all possible ways to learn a key, not just the most
obvious ones.

Electronic commerce systems often make implementation trade-
offs to enhance usability. It too badly influences safety.

Some systems can be broken through replay attacks: reusing old
messages or parts of old messages, to fool various parties.

Systems that allow old keys to be recovered in an emergency
provide another area to attack. Good cryptographic systems are designed so
that the keys exist for as short a period of time as possible.

Many systems break because they rely on user-generated
passwords. Left to themselves, people don't choose strong passwords. If
they're forced to use strong passwords, they can't remember them. Some
systems, particularly commerce systems, rely on tamper-resistant hardware
for security: smart cards, electronic wallets, dongles, etc. These systems
may assume public terminals never fall into the wrong hands.

150



Another research has looked at fault analysis: deliberately
introducing faults into cryptographic processors in order to determine the
secret keys. The effects of this attack can be devastating.

Many interesting attacks are against the underlying trust model of
the system: who or what in the system is trusted, in what way, and to what
extent. For example, some commerce systems can be broken by a merchant
and a customer colluding, or by two different customers colluding.

Many software systems make poor trust assumptions about the
computers they run on; they assume the desktop is secure. These programs
can often be broken by Trojan horse software. Systems working across
computer networks have to worry about security flaws resulting from the
network protocols.

Even when a system is secure if used properly, its users can subvert
its security by accident--especially if the system isn't designed very well.
The classic example of this is the user who gives his password to his co-
workers so they can fix some problem when he's out of the office.

Strong systems are designed to keep small security breaks
from becoming big ones. In a multi-user system, knowing one
person's secrets shouldn't compromise everyone else's. Many systems
have a "default to insecure mode." Other systems have no ability to
recover from disaster. If the security breaks, there's no way to fix it.
Good system design considers what will happen when an attack
occurs, and works out ways to contain the damage and recover from

the attack.

Sometimes, products even get the cryptography wrong. There are
some implementations that repeat "unique" random values, digital signature
algorithms that don't properly verify parameters, hash functions altered to
defeat the very properties they're being used for.

Once the attack is detected, the system needs to recover: generate
and promulgate a new key pair, update the protocol and invalidate the old
one, remove an untrusted node from the system, etc.

All it means the following. A good security product must defend
against every possible attack, even attacks that haven't been invented yet.
Defense should never be that narrow. One of the fundamental design
principles is that sooner or later, every system will be successfully attacked,
probably in a completely unexpected way and with unexpected
consequences. It is important to be able to detect such an attack, and then to
contain the attack to ensure it does minimal damage.

A. N. Dyadechko, ELA

151



