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Resonant suppression of thermal stability of the nanoparticle magnetization
by a rotating magnetic field
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We study the thermal stability of the periodic (P) and quasiperiodic (Q) precessional modes of the nanoparticle
magnetic moment induced by a rotating magnetic field. An analytical method for determining the lifetime of the
P mode, in the case of high anisotropy barrier and small amplitudes of the rotating field, is developed within
the Fokker-Planck formalism. In general case, the thermal stability of both P and Q modes is investigated by
numerical simulation of the stochastic Landau-Lifshitz equation. We show analytically and numerically that the
lifetime is a nonmonotonic function of the rotating field frequency, which, depending on the direction of field
rotation, has either a pronounced maximum or a deep minimum near the Larmor frequency.
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I. INTRODUCTION

Magnetic nanoparticles are of great interest because of
their nanoscale physical properties and many current and
potential applications. These applications range from high-
density storage media1,2 and spintronic devices3,4 to biomed-
ical applications like drug delivery, cell separation, cancer
treatment, and many others (for a review, see Refs. 5–7). Since
the physical properties of nanoparticles play a decisive role in
all these applications, their study is of fundamental importance.
In particular, for high-density storage media, e.g., bit-patterned
media2,8 where each nanoparticle is a carrier of information,
the thermal stability of a given direction (or magnitude) of the
nanoparticle magnetic moment is one of the most important
problems. The reason is that under thermal fluctuations, the
magnetic moment can be randomly switched to a new state
leading to the loss of information.

In the case of ferromagnetic nanoparticles, the fluctuation
dynamics of the nanoparticle magnetic moment can be
described by the stochastic Landau-Lifshitz equation. If the
noise term in this equation is approximated by the Gaussian
white noise, then the probability density of the magnetic
moment satisfies the Fokker-Planck equation whose properties
are well known.9 This approach, introduced by Brown10 almost
five decades ago, has become an important tool in the study
of stochastic magnetic dynamics (see Ref. 11 and references
therein). To characterize the thermal stability in the case of
uniaxial nanoparticles, it is often enough to determine the
lifetimes of the nanoparticle magnetic moment in the “up” and
“down” states. In the above approach, the lifetime in a given
state is usually interpreted as the relaxation time. However,
from a theoretical point of view, the lifetime is reasonable
to associate with the mean first-passage time (MFPT), i.e.,
average time that a random process dwells in a prescribed
state. An additional advantageous feature of this definition of
the lifetime is that the MFPT method is mathematically well
developed.12–14 This approach was first applied to study the
magnetic relaxation in systems of noninteracting15 and dipolar
interacting16 nanoparticles subjected to a constant magnetic
field.

In general, the lifetime depends on both intrinsic properties
of nanoparticles and external magnetic fields. The case when
the external fields contain a rotating magnetic field applied

perpendicular to the easy axes of nanoparticles has a particular
interest. On the one hand, this is because the rotating field plays
a key role in the microwave-assisted switching17–22 and, on the
other hand, because the corresponding dynamical equations
(without accounting the thermal fluctuations) can often be
solved analytically.23–27 Specifically, it has been shown23 (see
also Ref. 28) that the rotating field can induce two types
of the stable precessional modes of the magnetic moment,
namely, the periodic (P) and quasiperiodic (Q) modes. Under
certain conditions,29,30 one mode can exist in the up state
of the magnetic moment and the other in the down state.
The thermal fluctuations make the random transitions between
these modes possible, and the problem of the lifetime of
the P and Q modes appears. Some aspects of this problem
have already been considered previously in the context of
magnetic relaxation and induced magnetization.31–33 But the
dependence of the lifetime on the parameters of the rotating
field has not been studied systematically. At the same time,
the effect of strong dependence of the lifetime on the rotating
field frequency, which is expected to exist in the vicinity of
the Larmor frequency, could be important for applications.
Therefore, in this paper, we present a detailed analytical and
numerical analysis of the above mentioned problem.

The paper is organized as follows. In Sec. II, we describe
the model and define the lifetime of both the P and Q
modes. Here, we also derive the boundary conditions and
transformation properties of the lifetime. In Sec. III, we
develop an analytical method for calculating the frequency
dependence of the lifetime of the P mode in the case of
high anisotropy barrier. Our numerical results obtained by the
simulation of the deterministic and stochastic Landau-Lifshitz
equations are presented in Sec. IV. Specifically, the features
of the P and Q modes at zero temperature are studied in
Sec. IV A and the effects of thermal fluctuations are considered
in Sec. IV B. Finally, in Sec. V we summarize our findings.

II. LIFETIMES OF THE PRECESSIONAL MODES

A. Basic equations of the model

To study the influence of the rotating magnetic field on
the thermal stability of the nanoparticle magnetization, we
use a minimal model with coherent spin dynamics. Within this
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model, which is applicable to particles whose exchange energy
is comparatively large, the magnetic state of each particle is
completely characterized by the magnetic moment m = m(t)
of a fixed magnitude m = |m|. Due to its interaction with a heat
bath, m(t) is a vector random process, which can be described
by the stochastic Landau-Lifshitz equation34

d

dt
m = −γ m × (H + n) − λγ

m
m × (m × H), (2.1)

where γ (>0) is the gyromagnetic ratio, λ(>0) is the damping
parameter, the cross denotes the vector product, and H = H(t)
and n = n(t) are the effective magnetic fields. The first field
is given by H = −∂W/∂m, where W is the magnetic energy
of the particle, which in the case under consideration, contains
only the uniaxial anisotropy energy (1/2)Ham(1 − m2

z/m2)
and the Zeeman energy −m · h(t), i.e., H = Ha(mz/m)ez +
h(t). Here, the z axis of a Cartesian coordinate system xyz

with unit vectors ex , ey , and ez is chosen to be parallel to the
easy axis of magnetization, Ha(>0) is the anisotropy field,
mz = m · ez, the dot denotes the scalar product and h(t) is
the rotating magnetic field. We assume that h(t) is applied
perpendicular to the z axis, so that

h(t) = h cos(ωt)ex + ρh sin(ωt)ey, (2.2)

where h = |h(t)| is the field amplitude, ω is the angular rotation
frequency, and ρ = −1 (for clockwise rotation) or +1 (for
counterclockwise rotation). It is this field that induces the
precessional modes of m(t).

The effective field n(t) accounts for the thermal fluctu-
ations. It is assumed that the Cartesian components nα(t)
(α = x,y,z) of n(t) are independent Gaussian white noises
with zero means and correlation functions 〈nα(t1)nα(t2)〉 =
2�δ(t2 − t1). Here, the angular brackets denote averaging over
all realizations of n(t), � = λkBT /γm is the noise intensity,
kB is the Boltzmann constant, T is the absolute temperature,
and δ(t) is the Dirac δ function. In accordance with this
definition of n(t), the random process m(t) is Markovian and
can be described within the Fokker-Planck formalism.

Because Eq. (2.1) preserves the length of the magnetic
moment m(t), it is convenient to write the Fokker-Planck
equation that corresponds to Eq. (2.1) in spherical coordinates.
Introducing the polar and azimuthal angles θ (t) and ϕ(t)
of m(t), respectively, the forward and backward Fokker-
Planck equations for the conditional probability density P =
P (θ,ψ,t̃ |θ ′,ψ ′,t̃ ′) (t̃ � t̃ ′) can be written as32,33

∂2P

∂θ2
+ 1

sin2 θ

∂2P

∂ψ2
− ∂

∂θ

[
cot θ + 2a

λ
u(θ,ψ)

]
P

−2a

λ

∂

∂ψ
[v(θ,ψ) − ρω̃]P = 2a

λ

∂P

∂t̃
(2.3)

and

∂2P

∂θ ′2 + 1

sin2 θ ′
∂2P

∂ψ ′2 +
[

cot θ ′ + 2a

λ
u(θ ′,ψ ′)

]
∂P

∂θ ′

+2a

λ
[v(θ ′,ψ ′) − ρω̃]

∂P

∂ψ ′ = −2a

λ

∂P

∂t̃ ′
, (2.4)

respectively. Here, t̃ = ωrt is the dimensionless time, ωr =
γHa is the Larmor frequency, ω̃ = ω/ωr is the dimensionless

frequency of the rotating field, and a = mHa/2kBT is a
dimensionless parameter that characterizes the anisotropy
barrier height in the units of the thermal energy kBT . Finally,
the variables θ and ψ are associated with θ (t̃) and ψ(t̃) =
ϕ(t̃) − ρω̃t̃ , respectively, and the functions u(θ,ψ) and v(θ,ψ)
are expressed through the dimensionless magnetic energy

W̃ = W

mHa

= 1

2
sin2 θ − h̃ sin θ cos ψ (2.5)

(h̃ = h/Ha) as follows:

u(θ,ψ) = − 1

sin θ

(
λ sin θ

∂

∂θ
+ ∂

∂ψ

)
W̃

= −λ sin θ cos θ − h̃ sin ψ + λh̃ cos θ cos ψ,
(2.6)

v(θ,ψ) = 1

sin2 θ

(
sin θ

∂

∂θ
− λ

∂

∂ψ

)
W̃

= cos θ − h̃ cot θ cos ψ − λh̃
sin ψ

sin θ
.

It is assumed that the probability density P satisfies the
initial condition P |t̃=t̃ ′ = δ(θ − θ ′)δ(ψ − ψ ′). Moreover, if
the absorbing boundary conditions are not imposed, then P

is properly normalized:
∫ 2π

0 dψ
∫ π

0 dθP = 1.
The system of two stochastic differential equations

d

dt̃
θ (t̃) = u(θ (t̃),ψ(t̃)) + λ

2a
cot θ (t̃) +

√
λ

a
η1(t̃),

(2.7)
d

dt̃
ψ(t̃) = v(θ (t̃),ψ(t̃)) − ρω̃ +

√
λ

a

1

sin θ (t̃)
η2(t̃),

where ηj (t̃) (j = 1,2) denote independent Gaussian
white noises with zero means and correlation functions
〈ηj (t̃2)ηj (t̃1)〉 = δ(t̃2 − t̃1), leads to the same Fokker-Planck
equation (2.3).33 This means that the above system is
stochastically equivalent to the stochastic Landau-Lifshitz
equation (2.1). In what follows, we will use Eq. (2.7) to
numerically study the thermal stability of the precessional
modes of the magnetic moment m(t).

B. Definition, boundary conditions, and transformation
properties of the lifetime

At zero noise intensity, the rotating magnetic field h(t) can
induce stable precessional modes of m(t) of two types.23,28 In
the first, P mode, the precession angle �(t) is a constant and
m(t) in the laboratory frame is a periodic function of time. In
the second, Q mode, the precession angle varies periodically
and m(t) becomes a quasiperiodic function of time [because
the periods of �(t) and h(t) are in general not commensurable].
Some properties of these modes related to the steady state
will be considered in Sec. IV A. Here, we use only the fact
that, depending on the parameters h̃, ω̃, ρ, and λ, one or two
precessional modes may exist in steady state. In the latter case,
one mode occurs in the up state (σ = +1) and the other in the
down state (σ = −1) of m(t). We assume that for a given set
of the above parameters the magnetic moment m(t) is in the
state σ if mz(t) tends to σm as h̃ slowly decreases to zero. It
should be noted that the last condition is important because a
sharp decrease of h̃ can switch m(t) to another state.
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In steady state, the reference modes are stable and
transitions between them are impossible. However, these
transitions can occur under thermal fluctuations. In this case,
the precessional modes become metastable and the magnetic
moment remains in a given state σ for some (dimensionless)
random time t̃σ . The average value of this time, i.e., the
lifetime Tσ of the metastable state, can be determined using the
MFPT method.9,13 The basis of this method is the backward
Fokker-Planck equation (2.4), which should be written for
a given state σ . To this end, we add the index σ to all
angle variables, replace the conditional probability density P

by Pσ = Pσ (θσ ,ψσ ,t̃ |θ ′
σ ,ψ ′

σ ,t̃ ′), and assume that θ+1,θ
′
+1 ∈

(0,θ0), θ−1,θ
′
−1 ∈ (π − θ0,π ) and ψσ ,ψ ′

σ ∈ (0,2π ). Here, the
angle θ0 (π/2 < θ0 < π ) should be chosen so that the time
average of the precession angle �σ (t) [we recall that �σ (t)
for the P modes does not depend on t] is relatively close to
θ0 and to π − θ0 for σ = −1 and +1, respectively. To meet
these requirements, in our numerical simulations we assume
that θ0 = 0.8π .

In accordance with the MFPT approach, we consider a
circular cone with the cone angle π (1 − σ )/2 + σθ0 as the
absorbing boundary for the magnetic moment in the σ state,
i.e., Pσ |θ ′

σ =π(1−σ )/2+σθ0 = 0. In this case, taking into account
that Pσ = Pσ (θσ ,ψσ ,u|θ ′

σ ,ψ ′
σ ,0) (u = t̃ − t̃ ′), the lifetime can

be defined as Tσ = ∫ ∞
0 duQσ , where

Qσ =
∫ 2π

0
dψσ

∫ π(1−σ )/2+θ0(1+σ )/2

(π−θ0)(1−σ )/2
dθσ Pσ (2.8)

is the probability that the magnetic moment stays in the state σ

up to a given value of the time difference u. Finally, using the
relations Qσ |u=0 = 1 and Qσ |u=∞ = 0, one can make sure
that the lifetime Tσ = Tσ (θ ′

σ ,ψ ′
σ ) is governed by the partial

differential equation

∂2Tσ

∂θ ′2
σ

+ 1

sin2 θ ′
σ

∂2Tσ

∂ψ ′2
σ

+
[

cot θ ′
σ + 2a

λ
u(θ ′

σ ,ψ ′
σ )

]
∂Tσ

∂θ ′
σ

+ 2a

λ
[v(θ ′

σ ,ψ ′
σ ) − ρω̃]

∂Tσ

∂ψ ′
σ

= −2a

λ
. (2.9)

At the absorbing boundary, the solution of this equation
must satisfy the condition

Tσ |θ ′
σ =π(1−σ )/2+σθ0 = 0. (2.10)

One more important property of the lifetime is that it is a finite
function of θ ′

σ and ψ ′
σ . In order to prove this statement, let

us first approximate the stochastic dynamics of the magnetic
moment by a random walk on the sphere characterized by a
dimensionless discrete time t̃ = nτ , where n = 0,1, . . . and τ

is the time step. Then, denoting rσn the probability that the
magnetic moment stays in the state σ after the nth step, we
can write Qσ = ∏u/τ

n=1 rσn. If the maximal element of the set
{rσn} equals Rσ then Qσ < R

u/τ
σ and, as a consequence, Tσ <∫ ∞

0 duR
u/τ
σ = τ/| ln Rσ |. Finally, taking into account that the

condition θ0 < π implies that Rσ < 1, we obtain the desired
result:Tσ < ∞. It should also be noted that since the maximum
angular distance to the absorbing boundary occurs at θ ′

σ =
π (1 − σ )/2, i.e., max Tσ = Tσ |θ ′

σ =π(1−σ )/2, the condition of
finiteness of the lifetime can be written in the form

Tσ |θ ′
σ =π(1−σ )/2 < ∞. (2.11)

The above result shows the importance of knowing the
solution of Eq. (2.9) in a small vicinity of the point θ ′

σ = π (1 −
σ )/2. Assuming that θ ′

σ = π (1 − σ )/2 + σξσ (ξσ > 0), this
equation at ξσ → 0 reduces to

∂2Tσ

∂ξ 2
σ

+ 1

ξ 2
σ

∂2Tσ

∂ψ ′2
σ

+ 1

ξσ

∂Tσ

∂ξσ

− 2ah̃

λξσ

(σ cos ψ ′
σ

+ λ sin ψ ′
σ )

∂Tσ

∂ψ ′
σ

= −2a

λ
. (2.12)

Its solution can be represented as

Tσ = c ln ξσ + f0 +
∞∑
l=1

fl(ψ
′
σ )ξ l

σ , (2.13)

where c and f0 are constant parameters, and the functions fl =
fl(ψ ′

σ ) satisfy the ordinary differential equations d2f1/dψ ′2
σ +

f1 = 0 and

d2fl

dψ ′2
σ

+ l2fl − 2ah̃

λ
(σ cos ψ ′

σ + λ sin ψ ′
σ )

dfl−1

dψ ′
σ

= −2a

λ
δl2,

(2.14)
with l � 2 and δln being the Kronecker delta. According to
Eq. (2.13), the finiteness condition (2.11) takes the form c = 0,
which in turn is equivalent to limξσ →0 ξσ ∂Tσ /∂ξσ = 0. We note
that at c = 0 the derivative ∂Tσ /∂θ ′

σ in the point θ ′
σ = π (1 −

σ )/2, in general, does not vanish: ∂Tσ /∂θ ′
σ |θ ′

σ =π(1−σ )/2 = σf1.
However, if h̃ = 0 then f1 = 0 (this is so because in this case
Tσ does not depend on ψ ′

σ ), and the finiteness condition (2.11)
reduces to the reflecting boundary condition

∂Tσ

∂θ ′
σ

∣∣∣∣
θ ′
σ =π(1−σ )/2

= 0. (2.15)

It should also be noted that at h̃ �= 0, the same reflecting
boundary condition holds for the average lifetime T σ =
(1/2π )

∫ 2π

0 dψ ′
σTσ , since f 1 = 0.

Now, using the general equation (2.9), we can establish the
transformation properties of its solution Tσ = Tσ (θ ′

σ ,ψ ′
σ ; ρ)

(for clarity, the dependence of Tσ on ρ is shown explicitly),
which is assumed to obey the conditions (2.10) and (2.11).
Toward this end, let us introduce the change of variables

θ ′
σ = π − θ ′

−σ , ψ ′
σ = 2π − ψ ′

−σ . (2.16)

Taking into account that u(θ ′
σ ,ψ ′

σ ) = −u(θ ′
−σ ,ψ ′

−σ ) and
u(θ ′

σ ,ψ ′
σ ) = −u(θ ′

−σ ,ψ ′
−σ ), one can make sure that Eq. (2.9)

in the new variables θ ′
−σ and ψ ′

−σ becomes

∂2Hσ

∂θ ′2−σ

+ 1

sin2 θ ′−σ

∂2Hσ

∂ψ ′2−σ

+
[

cot θ ′
−σ + 2a

λ
u(θ ′

−σ ,ψ ′
−σ )

]
× ∂Hσ

∂θ ′−σ

+ 2a

λ
[v(θ ′

−σ ,ψ ′
−σ ) + ρω̃]

∂Hσ

∂ψ ′−σ

= −2a

λ
,

(2.17)

where Hσ = Tσ (π − θ ′
−σ ,2π − ψ ′

−σ ; ρ). In accordance with
the transforms (2.16), the conditions (2.10) and (2.11) for Hσ

take the form Hσ |θ ′−σ =π(1+σ )/2−σθ0 = 0 and Hσ |θ ′−σ =π(1+σ )/2 <

∞, respectively. Therefore, comparing Eqs. (2.9) and (2.17)
and the corresponding absorbing and finiteness conditions, one
can conclude that Hσ is equal to T−σ (θ ′

−σ ,ψ ′
−σ ; −ρ), i.e.,

Tσ (θ ′
σ ,ψ ′

σ ; ρ) = T−σ (π − θ ′
σ ,2π − ψ ′

σ ; −ρ). (2.18)
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For the average lifetime T σ , this transformation property reads
T σ (θ ′

σ ; ρ) = T −σ (π − θ ′
σ ; −ρ).

In general, the arguments θ ′
σ and ψ ′

σ of Tσ are arbitrary and
can be properly chosen to best suit the problem. In this paper,
we are interested in the lifetime of the precessional modes
reaching the steady state. Therefore the angles θ ′

σ and ψ ′
σ

should be associated with the solution of deterministic (when
a = ∞) Landau-Lifshitz equations (2.7) at some time t̃ = t̃st,
i.e., θ ′

σ = θσ (t̃st) and ψ ′
σ = ψσ (t̃st). To be sure that the magnetic

moment is near the steady state, we assume that t̃st > t̃0 + t̃rel,
where t̃0 is the time of increasing the rotating field amplitude
from 0 to a given value h̃, and t̃rel = 2/λ is the relaxation time.
It should be emphasized that the time t0 must be chosen large
enough to prevent the dynamical switching from the state σ

to the state −σ . In the P mode, the angles θσ (t̃st) and ψσ (t̃st)
approach the limiting precession angle �σ = limt̃→∞ �σ (t̃)
and the limiting difference of phases �σ = limt̃→∞ �σ (t̃),
respectively. As a consequence, the lifetime of this mode

Tσ = Tσ (�σ ,�σ ; ρ) (2.19)

does not depend on the precise choice of t̃st. In contrast, in the
Q mode, the precession angle �σ (t̃) is a periodic function of
time t̃ with a period T̃Q and the difference of phases is given
by �σ (t̃) = −νt̃ + �σ (t̃), where ν � 0 and �σ (t̃) is also a
periodic function with the same period T̃Q (see Sec. IV A).
Thus the lifetime of the Q mode, in general, depends on t̃st:

Tσ = Tσ (�σ (t̃st),�σ (t̃st); ρ). (2.20)

However, at a 	 1 this dependence is very weak and can be
safely neglected (see Sec. IV B).

In the case of P mode, the limiting angles �σ and �σ depend
also on the parameters h̃, ω̃, λ, and ρ. However, for brevity,
we keep only the parameter ρ, i.e., �σ = �σ [ρ] and �σ =
�σ [ρ], which together with the state parameter σ describes
the transformation properties of these angles. To find them, we
use Eq. (2.6) for representing the stationary Landau-Lifshitz
equations u(�σ [ρ],�σ [ρ]) = 0 and v(�σ [ρ],�σ [ρ]) = ρω̃ as

cos �σ (ρ) = 1

h̃
(sin �σ [ρ] − ρκ tan �σ [ρ]),

(2.21)
sin �σ [ρ] = −ρλκ

h̃
sin �σ [ρ],

where κ = ω̃/(1 + λ2). From these equations, it is straightfor-
ward to obtain the desired result:

�σ [ρ] = π − �−σ [−ρ], �σ [ρ] = 2π − �−σ [−ρ].
(2.22)

Because the transformation properties (2.22) are similar to
those in Eq. (2.16), from Eq. (2.18), one gets the transformation
property of the lifetime of the P mode:

Tσ (�σ [ρ],�σ [ρ]; ρ) = T−σ (π − �σ [ρ],2π − �σ [ρ]; −ρ).
(2.23)

It shows that the lifetimes characterized by the pairs {σ,ρ} and
{−σ,−ρ} are the same.

III. ANALYTICAL SOLUTION OF EQ. (2.9)

A. Three-mode approximation

The analytical determination of the lifetimes of the pre-
cessional modes implies the solution of Eq. (2.9) with the
absorbing and finiteness conditions (2.10) and (2.11). Since
the lifetime Tσ is a periodic function of ψ ′

σ with the period 2π ,
it can be expressed as the Fourier series

Tσ =
∞∑

n=−∞
Tσn(θ ′

σ )einψ ′
σ . (3.1)

To guarantee the reality of Tσ , we assume that the coefficients
Tσn = Tσn(θ ′

σ ) of the series satisfy the condition Tσ−n = T ∗
σn

(the asterisk denotes complex conjugation). Substituting this
series into Eq. (2.9) and introducing the differential operators

L̂n = d2

dθ ′2
σ

+ (cot θ ′
σ − a sin 2θ ′

σ )
d

dθ ′
σ

− n2

sin2 θ ′
σ

+ i
2an

λ
(cos θ ′

σ − ρω̃), (3.2)

N̂n = (λ cos θ ′
σ − i)

d

dθ ′
σ

+ λn

sin θ ′
σ

− in cot θ ′
σ ,

one obtains for Tσn an infinite set of coupled equations:

L̂nTσn + ah̃

λ
(N̂n+1Tσn+1 + N̂∗

−n+1Tσn−1) = −2a

λ
δn0. (3.3)

Like Tσ , the coefficients Tσn must satisfy both the absorbing
boundary condition Tσn|θ ′

σ =π(1−σ )/2+σθ0 = 0 and the finiteness
condition Tσn|θ ′

σ =π(1−σ )/2 < ∞.
In the three-mode approximation, when Tσn = 0 for all

|n| � 2, an infinite set of equations (3.3) reduces to a set of
three equations for Tσ0, Tσ1, and T ∗

σ1. Since Tσ is real, it is
convenient to consider instead of Tσ1 and T ∗

σ1 the real and
imaginary parts of Tσ1, i.e., T +

σ1 = Re Tσ1 and T −
σ1 = Im Tσ1.

Then, in this approximation, the lifetime (3.1) is given by

Tσ = Tσ0 + 2T +
σ1 cos ψ ′

σ − 2T −
σ1 sin ψ ′

σ (3.4)

and, denoting the real and imaginary parts of an operator Ô

as Ô+ and Ô−, respectively, from Eqs. (3.3) and (3.2), one
obtains a set of three coupled equations for Tσ0, T +

σ1, and T −
σ1:

L̂0Tσ0 + 2a

λ
(1 + h̃N̂+

1 T +
σ1 − h̃N̂−

1 T −
σ1) = 0, (3.5)

L̂+
1 T +

σ1 − L̂−
1 T −

σ1 = −ah̃

λ
N̂+

0 Tσ0, (3.6)

L̂+
1 T −

σ1 + L̂−
1 T +

σ1 = ah̃

λ
N̂−

0 Tσ0. (3.7)

Using Eq. (3.5), the function Tσ0(θ ′
σ ) can be expressed

through T +
σ1(θ ′

σ ) and T −
σ1(θ ′

σ ). Indeed, considering

Fσ (θ ′
σ ) = h̃N̂+

1 T +
σ1 − h̃N̂−

1 T −
σ1 (3.8)

as a given function of θ ′
σ , one can write a formal solution of

Eq. (3.5).35 From this solution, by satisfying the absorbing
and reflecting boundary conditions Tσ0|θ ′

σ =π(1−σ )/2+σθ0 = 0
and dTσ0/dθ ′

σ |θ ′
σ =π(1−σ )/2 = 0 (since Tσ0 does not depend on

θ ′
σ , the last condition is equivalent to the finiteness condition
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Tσ0|θ ′
σ =π(1−σ )/2 < ∞, see Sec. II B), we obtain

Tσ0 = 2a

λ

∫ σ cos θ ′
σ

cos θ0

dx
e−ax2

1 − x2

∫ 1

x

dy[1 + Fσ (arccos σy)]eay2
.

(3.9)
Substituting this result into Eqs. (3.6) and (3.7), one can
readily get the coupled integro-differential equations for T +

σ1
andT −

σ1 which, however, are too complicated to be solved in the
general case. Moreover, these equations are not closed because,
in accordance with Eqs. (3.8), (3.6), and (3.7), the function
Fσ (arccos σy) depends on Tσ0. Fortunately, an important case
of high anisotropy barrier can be studied in detail.

B. High anisotropy barrier

In the case of high anisotropy barrier (or low temperatures),
when the condition a = mHa/2kBT 	 1 holds, the main
contribution to the first integral in Eq. (3.9) comes either from
a small vicinity of the point x = 0 (if θ ′

σ is not too close to π/2
and σ cos θ ′

σ > 0) or from the vicinity of the point x = σ cos θ ′
σ

(if σ cos θ ′
σ < 0). It should be noted that the latter situation can

be realized only in the case of Q mode with max �+1(t̃) > π/2
or min �−1(t̃) < π/2. Here, we restrict our theoretical analysis
by considering small amplitudes of the rotating field that do not
exceed the threshold amplitude of the Q mode. Such rotating
field can induce only the P mode and, as a consequence,
the former situation is always realized (see also Sec. IV A).
Therefore taking into account that in this case, the integrals∫ σ cos θ ′

σ

cos θ0
dxe−ax2

and
∫ 1

0 dyeay2
at a 	 1 can be approximated

by
∫ ∞
−∞ dxe−ax2 = √

π/a and ea/2a, respectively, Eq. (3.9)
reduces to

Tσ0 = ea

λ

√
π

a

[
1 + 2ae−a

∫ 1

0
dyFσ (arccos σy)eay2

]
.

(3.10)
In order to evaluate the integral in Eq. (3.10), we note that

small vicinities of the limits of the integration determine the
asymptotic behavior of this integral at a → ∞. More precisely,
the lower limit is responsible for the high-frequency behavior
of this integral and the upper one for its behavior in the
resonant case. Hereafter, we call the rotating field resonant
if ω̃ ∼ 1 and the direction of its rotation coincides with the
direction of the natural precession of the magnetic moment,
i.e., if σρ = +1. To study these cases in a unified way, it is
convenient to write the integral in Eq. (3.10) as a sum of two
terms, Fσ (arccos σ )ea/2a and Fσ (arccos 0), which correspond
to the resonant and high frequencies, respectively. Thus taking
into account that arccos σ = π (1 − σ )/2 and arccos 0 = π/2,
Eq. (3.10) yields

Tσ0 = ea

λ

√
π

a

[
1 + Fσ

(
π

2
(1 − σ )

)
+ 2ae−aFσ

(
π

2

)]
.

(3.11)
It is important to stress at this point that Eq. (3.11) is not an
exact asymptotic formula for Tσ0 because the terms Fσ (π (1 −
σ )/2) and 2ae−aFσ (π/2) correspond to different frequencies.

1. Vicinity of the point θ ′
σ = π (1 − σ )/2

To calculate Fσ (π (1 − σ )/2)), we need to solve Eqs. (3.6)
and (3.7) in the vicinity of the point θ ′

σ = π (1 − σ )/2.

Assuming that θ ′
σ = π (1 − σ )/2 + σησ (0 < ησ 
 1) and

ah̃ 
 1, these equations can be rewritten as

L̂+
1 T +

σ1 − 2a

λ
(σ − ρω̃)T −

σ1 = −ah̃
dTσ0

dησ

,

(3.12)

L̂+
1 T −

σ1 + 2a

λ
(σ − ρω̃)T +

σ1 = −σ
ah̃

λ

dTσ0

dησ

,

where

L̂+
1 = d2

dη2
σ

+
(

1

ησ

− 2aησ

)
d

dησ

− 1

η2
σ

. (3.13)

Since the approximate formula (3.11) does not depend on
θ ′
σ , it cannot be used to determine the derivative dTσ0/dησ .

Therefore we use an exact result:

dTσ0

dθ ′
σ

= −σ
2ae−a cos2θ ′

σ

λ sin θ ′
σ

∫ 1

σ cos θ ′
σ

dy[1 + Fσ (arccos σy)]eay2
,

(3.14)
following from Eq. (3.9), which at ησ 
 1 gives

dTσ0

dησ

= −a

λ

[
1 + Fσ

(
π

2
(1 − σ )

)]
ησ . (3.15)

It is not difficult to verify that an exact solution of Eq. (3.12)
that vanishes as h̃ → 0 has the form

T +
σ1 = − (1 − λ2 − σρω̃)h̃

2[(1 − σρω̃)2 + λ2]

dTσ0

dησ

,

(3.16)

T −
σ1 = σ

λ(2 − σρω̃)h̃

2[(1 − σρω̃)2 + λ2]

dTσ0

dησ

,

where dTσ0/dησ is given by Eq. (3.15). According to this
equation, the solution (3.16) contains an unknown parameter
Fσ (π (1 − σ )/2), which can be determined from the fitting
condition Fσ (π (1 − σ )/2) = (h̃N̂+

1 T +
σ1 − h̃N̂−

1 T −
σ1)|ησ =0 [see

Eq. (3.8)]. Taking into account that N̂+
1 = λd/dησ + λ/ησ

and N̂−
1 = −σd/dησ − σ/ησ , this condition reduces to

Fσ

(
π

2
(1 − σ )

)
= λ(1 + λ2)h̃2

(1 − σρω̃)2 + λ2

d2Tσ0

dη2
σ

. (3.17)

Finally, substituting Eq. (3.15) into Eq. (3.17) and imposing
the commonly used condition λ2 
 1, one gets

Fσ

(
π

2
(1 − σ )

)
= − ah̃2

(1 − σρω̃)2 + λ2 + ah̃2
. (3.18)

2. Vicinity of the point θ ′
σ = π/2

To find Fσ (π/2), we assume that θ ′
σ = π/2 + ξσ (|ξσ | 
 1)

and, as before, ah̃ 
 1. Since in this case, L̂−
1 = −2a(ξσ +

ρω̃)/λ, N̂+
0 = −λξσ d/dξσ , and N̂−

0 = −d/dξσ , Eqs. (3.6)
and (3.7) take the form

L̂+
1 T +

σ1 + 2a

λ
(ξσ + ρω̃)T −

σ1 = ah̃ξσ

dTσ0

dξσ

,

(3.19)

L̂+
1 T −

σ1 − 2a

λ
(ξσ + ρω̃)T +

σ1 = −ah̃

λ

dTσ0

dξσ

,

where

L̂+
1 = d2

dξ 2
σ

+ 2aξσ

d

dξσ

− 1 (3.20)
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and, as it follows from Eq. (3.14), the derivative dTσ0/dξσ at
ξσ → 0 is given by

dTσ0

dξσ

= −σ
ea

λ

[
1 + Fσ

(
π

2
(1 − σ )

)
+ 2ae−aFσ

(
π

2

)]
.

(3.21)
In general, the solution of Eq. (3.19) can be represented

in the form of the Taylor series: T ±
σ1 = ∑∞

n=0 c±
σnξ

n
σ . How-

ever, since the main quantity of our interest is Fσ (π/2) =
(h̃N̂+

1 T +
σ1 − h̃N̂−

1 T −
σ1)|ξσ =0 = λh̃c+

σ0 + h̃c−
σ1 (here, N̂+

1 = λ

and N̂−
1 = −d/dξσ ), we can restrict ourselves to the linear

approximation, i.e., T ±
σ1 = c±

σ0 + c±
σ1ξσ . Assuming that ω̃ 	

λ/2a, after straightforward calculations one obtains

c−
σ0 = λh̃

4aω̃2

dTσ0

dξσ

, c+
σ0 = ρ

h̃

2ω̃

dTσ0

dξσ

(3.22)

and

c−
σ1 = ρ

λ(1 + ω̃2)h̃

2ω̃(λ2 + ω̃2)

dTσ0

dξσ

, c+
σ1 = − h̃

2(λ2 + ω̃2)

dTσ0

dξσ

.

(3.23)
Therefore the fitting condition Fσ (π/2) = λh̃c+

σ0 + h̃c−
σ1 can

be reduced to the following one:

Fσ

(
π

2

)
= ρ

λ(1 + λ2 + 2ω̃2)h̃2

2ω̃(λ2 + ω̃2)

dTσ0

dξσ

, (3.24)

which together with Eq. (3.21) at λ2 
 1 yields

Fσ

(
π

2

)
= −σρ

ea[1 + Fσ (π (1 − σ )/2)]h̃2

2[g(ω̃) + σρah̃2]
, (3.25)

where g(ω̃) = ω̃(λ2 + ω̃2)/(1 + 2ω̃2) and Fσ (π (1 − σ )/2) is
defined in Eq. (3.18).

3. Frequency dependence of the lifetime

Now we are in a position to determine the lifetime (2.19)
of the P mode. Using Eq. (3.4) and the fact that Tσ0 does not
depend on θ ′

σ and ψ ′
σ , the desired lifetime can be expressed as

Tσ = Tσ0 + 2(T +
σ1 cos �σ [ρ] − T −

σ1 sin �σ [ρ])|θ ′
σ =�σ [ρ].

(3.26)
If the field amplitude h̃ is small enough, then cos �σ [ρ] in
Eq. (2.21) can be replaced by σ . One can easily check that in
this case,

tan �σ [ρ] = −ρ
λω̃

1 + λ2 − σρω̃
, (3.27)

and the precession angle �σ [ρ] is given by

�σ [ρ] = π

2
(1 − σ ) + σ h̃

√
1 + λ2

(1 − σρω̃)2 + λ2
. (3.28)

The last result shows that the functions T ±
σ1 in Eq. (3.26) must

be taken from Eq. (3.16) with ησ = σ�σ [ρ] + π (1 − σ )/2.
But, according to Eq. (3.11), the term Tσ0 contains an
additional factor ea , and so the second term in Eq. (3.26),
which describes the dependence of Tσ on �σ [ρ], can be safely
neglected at a 	 1.

Thus using Eqs. (3.11), (3.18), and (3.25), for the lifetime
of the P mode, we obtain

Tσ = ea

λ

√
π

a
Rσρ(ω̃)Sσρ(ω̃), (3.29)

where

Rσρ(ω̃) = 1 − ah̃2

(1 − σρω̃)2 + λ2 + ah̃2
(3.30)

and

Sσρ(ω̃) = 1 − σρah̃2

g(ω̃) + σρah̃2
. (3.31)

If σρ = +1, then Eq. (3.29) correctly describes the frequency
dependence of the lifetime in the vicinity of the point ω̃ = 1
and at ω̃ 	 1. Since ah̃2 
 1, λ2 
 1, and g(1) ≈ 1/3, in
the former case, we obtain Tσ = (ea/λ)

√
π/aR+1(ω̃). To put

it differently, the rotating magnetic field whose direction of
rotation coincides with the direction of the natural precession
decreases the lifetime in a resonant manner, i.e., a resonant sup-
pression of the thermal stability of the P mode occurs. Taking
into account that 1 − R+1(ω̃) ∝ ω̃−2 and 1 − S+1(ω̃) ∝ ω̃−1,
in the latter case, Eq. (3.29) yields Tσ = (ea/λ)

√
π/aS+1(ω̃).

In contrast, at σρ = −1 Eq. (3.29) describes only the high-
frequency behavior of the lifetime: Tσ = (ea/λ)

√
π/aS−1(ω̃).

Combining the last two results, we obtain the expression

Tσ = ea

λ

√
π

a

(
1 − σρ

2ah̃2

ω̃

)
(3.32)

(ω̃ 	 1), which shows that while at σρ = +1 the rotating field
suppresses the lifetime of the P mode, the rotating field with
σρ = −1 enhances it.

4. Lifetime at zero frequency

For the evaluation of the lifetime at ω̃ = 0, it is convenient
to use the one-dimensional approximation, which consists in
replacing ψ by 0 in the magnetic energy (2.5). In this case,
u(θ ′

σ ,ψ ′
σ ) = −(λ/2) sin 2θ ′

σ + λh̃ cos θ ′
σ , the lifetime Tσ does

not depend on ψ ′
σ , and the partial differential equation (2.9)

reduces to the ordinary one:

d2Tσ

dθ ′2
σ

+ (cot θ ′
σ − a sin 2θ ′

σ + 2ah̃ cos θ ′
σ )

dTσ

dθ ′
σ

= −2a

λ
.

(3.33)
Its exact solution satisfying the conditions (2.10) and (2.15)
[we note that for this equation the finiteness condition (2.11)
is equivalent to the reflecting boundary condition (2.15)] can
be written in the form

Tσ = 2a

λ

∫ σ cos θ ′
σ

cos θ0

dx
e−af (x)

1 − x2

∫ 1

x

dyeaf (y), (3.34)

where f (x) = x2 + 2h̃
√

1 − x2 (|x| � 1) is the sym-
metric function with minf (x) = f (0) = 2h̃, maxf (x) =
f (

√
1 − h̃2) = 1 + h̃2, and f (1) = 1.

As before, we are interested in the behavior of Tσ at a 	 1.
In this case, a small vicinity of the point x = 0 gives the main
contribution to the first integral in Eq. (3.34). This contribution
depends not only on a but also on the parameter ah̃. In
particular, if ah̃ 
 1 then, putting x = 0 everywhere except
for e−af (x), representing e−af (x) in the vicinity of the point
x = 0 as e−2ah̃−a(1−h̃)x2 ≈ (1 − 2ah̃)e−ax2

and extending the
limits of integration to infinity, Eq. (3.34) yields

Tσ = 2

λ

√
πa (1 − 2ah̃)

∫ 1

0
dyeaf (y). (3.35)
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Then, taking into account that∫ 1

0
dyeaf (y) ≈ ea

∫ ∞

0
dze−2az(1 + 23/2ah̃

√
z)

= ea

2a
(1 + √

πa h̃) (3.36)

(a 	 1, ah̃ 
 1) and neglecting terms proportional to
√

πa h̃,
from Eqs. (3.35) and (3.36), one finds

Tσ = ea

λ

√
π

a
(1 − 2ah̃). (3.37)

Comparing this result with Eq. (3.32), we conclude that
Tσ |ω̃=0 < Tσ |ω̃=∞, and so at σρ = −1, the frequency depen-
dence of the lifetime has a maximum exceeding the limiting
value Tσ |ω̃=∞ = (ea/λ)

√
π/a.

It should be noted that the lifetime Tσ |ω̃=0 strongly
decreases with increasing h̃. For example, if h̃ ∼ 1/

√
a then,

instead of Eq. (3.35), we obtain

Tσ = 2

λ

√
πa

1 − h̃
e−2ah̃

∫ 1

0
dyeaf (y). (3.38)

To evaluate the integral in Eq. (3.38), it is convenient to divide
the interval of integration (0,1) into two parts, (0,

√
1 − h̃2) and

(
√

1 − h̃2,1), and apply the Laplace method.36 By this way, the
corresponding integrals can easily be evaluated yielding∫ √

1−h̃2

0
dyeaf (y) ≈ h̃√

a
ea(1+h̃2)

∫ √
a/h̃

0
dze−z2

= h̃

2

√
π

a
ea(1+h̃2)erf

(√
a

h̃

)
(3.39)

and ∫ 1

√
1−h̃2

dyeaf (y) ≈ h̃√
a

ea(1+h̃2)
∫ √

ah̃/2

0
dze−z2

= h̃

2

√
π

a
ea(1+h̃2)erf

(√
ah̃

2

)
, (3.40)

where erf(z) = (2/
√

π )
∫ z

0 dxe−x2
is the error function. Fi-

nally, using Eqs. (3.38)–(3.40) and the approximate formula
erf(

√
a/h̃) ≈ 1 (

√
a/h̃ ∼ a 	 1), we find the following ex-

pression for the lifetime at ω̃ = 0:

Tσ = πh̃

λ
√

1 − h̃
ea(1−h̃)2

[
1 + erf

(√
ah̃

2

)]
, (3.41)

which is valid if a 	 1 and h̃ is of the order of 1/
√

a. It is not
difficult to see that for these conditions the strong inequality
Tσ |ω̃=0 
 Tσ |ω̃=∞ holds. Taking into account also Eq. (3.32),
we can conclude that Tσ as a function of ω̃ at σρ = −1 has a
local maximum (see Sec. IV B).

IV. NUMERICAL RESULTS

A. Precessional modes of the magnetic moment

The analytical results suggest that the numerical analysis
of the lifetimes of the precessional modes should start with

the study of these modes without thermal fluctuations. More
precisely, it is necessary (i) to determine the conditions when
for a given rotating field one precessional mode exists in the up
state of the magnetic moment and one in the down state, and
(ii) to study the steady-state properties of these modes. To solve
these problems, we use the Landau-Lifshitz equation written
in the form of Eq. (2.7) with a = ∞. In general, the finite state
of the magnetic moment (i.e., state at t̃ → ∞) depends not
only on the parameters h̃, ω̃, and ρ characterizing the rotating
field, but also on how this field is switched on. In particular, a
sharp switching of the rotating field induces dynamical effects
that may result in a change of the initial state σ .30 Although
these effects can be important for applications, they are out of
our scope here. Therefore to minimize the role of dynamical
effects, we assume that the switch-on of the rotating field is
slow enough.

In order to determine the character of the precessional
modes for a given rotating field, the following numerical
scheme is used. First, the field amplitude is discretized
as h̃ = n�h̃, where n = 1,2, . . . and �h̃ is the amplitude
increment. Then, putting n = 1 and using the initial conditions
θ (0) = π (1 − σ )/2 + σ10−4 and ψ(0) = 0, the fourth-order
Runge-Kutta method with a time step �t̃ = 10−3 is applied
to solve Eq. (2.7) at a = ∞ on the time interval [0,t̃m] (t̃m 	
t̃rel = 2/λ). It is assumed that at t̃ = t̃m the field amplitude
jumps from �h̃ to 2�h̃, i.e., n becomes equal to two, and
Eq. (2.7) is solved again on the interval [0,t̃m]. But now
the initial conditions are the solutions obtained for t̃ = t̃m
at the previous stage: θ (0)|n=2 = θ (t̃m)|n=1 and ψ(0)|n=2 =
ψ(t̃m)|n=1. Continuing this procedure, Eq. (2.7) can be solved
for an arbitrary n. It is worth to note that since t̃m 	 t̃rel, the
solutions of this equation at t̃ ∼ t̃m are expected to be quite
close to the steady-state solutions �σ (t̃) and �σ (t̃).

Using the above procedure with �h̃ = 10−2, t̃m = 103,
and λ = 0.15 [this value of λ, which belongs to the interval
(0.01,0.22) of typical values of the damping parameter in the
case of Co samples,37 is used in all our numerical calculations],
we determined the character of the precessional modes for
a wide range of parameters characterizing the rotating field.
It is established that if σρ = −1 then only the P mode is
realized for all h̃ and ω̃. In contrast, the precessional modes at
σρ = +1 exhibit a much more complex behavior. The results
related to the character of these modes are summarized in
the diagram shown in Fig. 1. We note that the difference
between two P modes, which exist in the regions P+1 and
P†

+1, is that the precession angle �σ as a function of h̃ is
discontinuous at the boundary between them. It should also
be emphasized that the transitions between the modes with
σρ = +1, which occur under changing the field amplitude
h̃, are reversible. For clearness of presentation, this fact is
illustrated by the horizontal bidirectional arrows. In contrast,
the transitions to the P mode with σρ = −1 are irreversible
(they are depicted by the horizontal unidirectional arrows).
Moreover, using Eq. (2.21) and the stability criterion for the
P mode,25 we independently confirmed the correctness of this
diagram by calculating the lines that separate the regions with
σρ = +1.

Since the rotating field is switched on during the time
interval of duration t̃0 = (n − 1) × 103, the above procedure
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FIG. 1. (Color online) Diagram of the precessional modes for
σρ = +1. The regions in the h̃-ω̃ plane where different P modes exist
at σρ = +1 are denoted as P+1 (white) and P†

+1 (light-green). The Q
mode is realized in the white shaded region. In the region denoted
as P−1 (blue), the stable precessional modes with σρ = +1 do not
exist. Here, only the P mode with σρ = −1 is realized. The vertical
dotted lines (a), (b), (c), and (d) correspond to h̃ = 0.05, 0.1, 0.18,
and 0.25, respectively.

is time consuming. However, in view of the importance of
the diagram of the precessional modes for the problem of
lifetimes, its use for the precise determination of this diagram
is quite acceptable. At the same time, the application of this
method to the study of the steady-state properties of a given
mode whose character is already known from the diagram, is
clearly redundant. Therefore to reduce the computational time,
next we use a modified numerical procedure with t̃m = �t̃ and
�h̃ = h̃�t̃/50 leading to t̃0 = �t̃ h̃/�h̃ = 50.

Figure 2 shows the frequency dependence of the precession
angle �+1 for different precessional modes. The dashed

FIG. 2. (Color online) Frequency dependence of the precession
angle �+1 for different modes that exist at h̃ = 0.25. The frequencies
ω̃1 = 0.49, ω̃2 = 0.70, and ω̃3 = 0.89 are the coordinates of the
points in which the vertical dotted line (d), see Fig. 1, crosses the
boundaries of the diagram (ω̃1, ω̃2, and ω̃3 depend on h̃). The green
line (with squares) and brown line (with triangles) show the frequency
dependence of max �+1(t̃) and min �+1(t̃), respectively, in the case
of Q mode.

FIG. 3. (Color online) Time dependence of the precession angle
�+1(t̃) in the case of Q mode. The parameters of the rotating field are
as follows: ρ = +1, ω̃ = 0.725, and h̃ = 0.25.

(black) and solid (blue) lines correspond to the P modes
with σρ = −1 and σρ = +1, respectively. In accordance
with Fig. 1, the Q mode occurs at ω̃2 < ω̃ < ω̃3 (we recall
that this mode can exist only if σρ = +1). For this mode,
the time dependence of the precession angle �+1(t̃) and
the time dependence of the difference of phases �+1(t̃) =
−νt̃ + �+1(t̃) are illustrated in Figs. 3 and 4. We note that
for a given set of parameters max �+1(t̃) > π/2, i.e., the
precession angle �σ (t̃) in the case of Q mode can cross the
anisotropy barrier. Moreover, since sin �σ (t̃) and sin �σ (t̃)
have the same period T̃Q, the parameter ν and the period T̃Q

(its frequency dependence illustrates Fig. 5) are connected by
the condition ν = 2kπ/T̃Q, where k is a nonnegative integer
that depends on h̃ and ω̃. In particular, if h̃ = 0.25 then k = 1 at
ω̃2 < ω̃ < ω̃′

2, where ω̃′
2 = 0.78 is the solution of the equation

min �+1(t̃)|ω̃=ω̃′
2
= 0 (see Fig. 2), and k = 0 at ω̃′

2 < ω̃ < ω̃3.
It should also be stressed that in the last case, the function
�+1(t̃) shows a cosinelike behavior, in contrast to that shown
in Fig. 4.

FIG. 4. (Color online) Time dependence of the difference of
phases �+1(t̃) = −νt̃ + �+1(t̃) in the case of Q mode. Insert: time
dependence of the function �+1(t̃). The parameters of the rotating
field are the same as in Fig. 3 and ν = 0.38.
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FIG. 5. (Color online) Frequency dependence of the period T̃Q of
the precession angle �+1(t̃) in the case of Q mode. The rotating field
parameters are taken as ρ = +1 and h̃ = 0.25.

B. Simulated lifetimes and their properties

As it was mentioned earlier, the thermal fluctuations can
cause the transitions between different precessional modes
induced by a given rotating field. According to the diagram in
Fig. 1, these modes, one in the up state of the magnetic moment
and the other in the down state, exist only if the amplitude and
frequency of the rotating field belong to the region P+1, P †

+1, or
Q. In this case, the lifetime of a given mode can be calculated
from the numerical solution of the stochastic equations (2.7).
Our testing calculations showed that the solution of these
equations by the Euler method gives practically the same
lifetime obtained by the fourth-order Runge-Kutta method.
But in the first case, the calculation time is almost four
times less. Therefore because the procedure of determining
the frequency dependence of the lifetime is extremely time
consuming, we used the Euler method. The time step �t̃

is chosen to be 10−3 and the initial conditions are given by
θσ (0) = π (1 − σ )/2 + σ10−2 and ψσ (0) = 0. To prevent the
appearance of singularities in Eq. (2.7) at θσ = π (1 − σ )/2,
we assume that the point θσ = π (1 − σ )/2 + σ10−3 acts on
the process θσ (t̃) as a reflecting screen. Since our interest
here is the lifetimes of the precessional modes reaching
the steady state, the thermal fluctuations are switched on
at t̃ = t̃st (see Sec. II B) with t̃st = t̃0 + t̃rel (see Fig. 6). In
the case of P modes, we chose t̃st = 102, while for the Q
mode, t̃st ∈ [102,102 + T̃Q]. In the latter case, the thermal
fluctuations can be switched on at a certain instant of time,
e.g., when the precession angle �σ (t̃) reaches maximum
or minimum. Finally, in all our numerical simulations, the
parameter a = mHa/2kBT is chosen to be ten.

In Fig. 7, we show the frequency dependencies of the
lifetimeT+1 for the rotating field amplitudes indicated in Fig. 1.
Each point of these curves is determined by running N = 104

trajectories of the polar angle θ (t̃) (see the caption to Fig. 6).
If h̃ < 0.19, then the dependence of T+1 on ω̃ is continuous
and exhibits a resonant minimum at ω̃ = ω̃res. The plot of the
resonant frequency ω̃res versus the field amplitude h̃ is shown
in Fig. 8. In contrast, if h̃ > 0.19 then T+1 is discontinuous:
at ω̃ ∈ (ω̃1,ω̃2), the function T+1 does not exist. This result is
a consequence of the fact that in the region P−1 (see Fig. 1),
there are no stable precessional modes with σρ = +1.

FIG. 6. (Color online) Schematic time dependence of the polar
angle θ (t̃) in the regions P+1 and P†

+1 shown in Fig. 1. The change of
the magnetic moment state σ from +1 to −1 occurs at t̃ = t̃0 + t̃rel +
t̃+1, when θ (t̃) reaches the angle θ0 = 0.8π (the horizontal dashed
line) for the first time. For a given trajectory θ (t̃), the lifetime of the P
mode in the state σ = +1 is equal to t̃+1. Running N 	 1 trajectories,
the mean lifetime can be evaluated as T+1 = (1/N )

∑N

i=1 t̃
(i)
+1 .

One more important feature of the lifetime T+1 is that it
is practically not sensitive to changing the character of the
precessional modes. In particular, for h̃ = 0.1, the frequency
dependence of T+1 (see the red line with circles in Fig. 7)
is continuous at the point ω̃ = 0.74 (i.e., point separating
the regions P+1 and P†

+1 at h̃ = 0.1), while the precession
angle �+1 is discontinuous. This insensibility of the lifetime
to changing the precessional modes with changing the field
frequency ω̃ is especially surprising when the Q mode appears.
For example, even at h̃ = 0.25, when the precession angle can
cross the anisotropy barrier (see Fig. 3), the character of the
frequency dependence of T+1 (see the green line with stars in
Fig. 7) is changed at ω̃ = ω̃3 so small that it is not visible on this
scale. Moreover, the lifetime of the Q mode does almost not
depend on t̃st ∈ [102,102 + T̃Q]. This result is counterintuitive
because different t̃st may correspond to very different values of
the precession angle �+1(t̃st). Therefore, in order to get more
insight into the problem, we calculated the probability density
function D(t̃+1) of the lifetime of the Q mode for two special
values of t̃st, which correspond to min �+1(t̃) and max �+1(t̃),

FIG. 7. (Color online) Frequency dependencies of the lifetime of
the precessional modes induced by the rotating field with ρ = +1 in
the up state (σ = +1) of the magnetic moment.
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FIG. 8. (Color online) Dependence of the resonant frequency of
the lifetime T+1 on the rotating field amplitude.

respectively. As seen from Fig. 9, these density functions
are somewhat different from each other only if t̃+1 � t̃rel.
In this region, the probability density D(t̃+1) depends on t̃st

and exhibits local minima and maxima, which come from a
complex behavior of the Q mode. In contrast, at t̃+1 	 t̃rel,
the memory about the chosen value of t̃st and periodicity of
�+1(t̃) and �+1(t̃) is lost. As a consequence, in this region,
the difference between density functions vanishes and the
local minima and maxima disappear. Such behavior of D(t̃+1)
on t̃st confirms that the lifetime T+1 = ∫ ∞

0 dt̃+1 t̃+1D(t̃+1)
practically does not depend on t̃st.

Finally, the influence of the direction of field rotation on
the frequency dependence of the lifetime of the precessional
modes is illustrated in Fig. 10. In accordance with our
analytical results, the rotating field with ρ = +1 and ρ = −1
influences the lifetime T+1 in a different way. Specifically, T+1

as a function of ω̃ at ρ = +1 displays a deep minimum, while
at ρ = −1 it shows a pronounced maximum. This difference
in the behavior of the lifetime results from that the rotating
fields with different ρ act on the magnetic moment in a given

FIG. 9. (Color online) Probability density functions of the life-
time of the Q mode for two values of t̃st. The blue solid and
red dashed lines correspond to such t̃st that �+1(t̃st) = max �+1(t̃)
and �+1(t̃st) = min �+1(t̃), respectively. Insert: the same density
functions in a larger time scale. The parameters of the rotating field
are as follows: ρ = +1, ω̃ = 0.75, and h̃ = 0.25.

FIG. 10. (Color online) Frequency dependencies of the lifetime
of the precessional modes in the up state (σ = +1) of the magnetic
moment. It is assumed that h̃ = 0.25 for both clockwise (ρ = −1)
and counterclockwise (ρ = +1) rotation of the magnetic field.

state σ quite differently. From a physical point of view, the
reason is that the magnetic moment has a definite direction
of the natural precession. We note also that the numerical
data T+1|ω̃→∞ = 9.1 × 104 and T+1|ω̃→0 = 1.97 × 103 are
in a good agreement with the analytical results 8.2 × 104 and
2.38 × 103 obtained from the asymptotic formulas (3.32)
and (3.41), respectively. Some difference between them can be
caused by that the asymptotic formulas, which were obtained
at a → ∞, are applied to a = 10.

V. CONCLUSIONS

We have studied in detail the thermal stability of the
precessional modes of the nanoparticle magnetic moment
induced by the rotating magnetic field whose plane of rotation
is perpendicular to the easy axis of the nanoparticle. If the
direction of field rotation and the direction of the natural
precession of the magnetic moment are opposite, i.e., if
the condition σρ = −1 holds, then only periodic (P) stable
mode is induced by this field. In contrast, if the above
mentioned directions coincide, i.e., if σρ = +1, then the
magnetic moment exhibits a much more complicated behavior.
The numerical solution of the deterministic Landau-Lifshitz
equation in the long-time limit has shown that, depending
on the rotating field amplitude and frequency, in this case
the magnetic moment can be in one of two P modes, in the
quasiperiodic (Q) mode, or even be unstable. These results
obtained in the absence of thermal fluctuations have been
collected in the diagram shown in Fig. 1.

If the amplitude and frequency of the rotating field are
chosen so that a stable precessional mode exists in both
up (σ = +1) and down (σ = −1) states of the magnetic
moment, then the thermal fluctuations can cause transitions
between these modes. One of the most important parameters
characterizing these transitions is the lifetime of a given
mode. Since it can be naturally associated with the mean
first-passage time for the magnetic moment, we have used the
Fokker-Planck formalism to define this quantity and calculate
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its properties. In particular, we have determined the boundary
conditions and transformation properties of the lifetime and
have developed an analytical method for finding its frequency
dependence in the case of high anisotropy barrier and small
amplitudes of the rotating field. Using this method, it has been
shown that the rotating field (a) slightly decreases (if σρ = +1)
or increases (if σρ = −1) the lifetime of the P mode at large
frequencies and (b) strongly decreases it (if σρ = +1) in the
vicinity of the Larmor frequency. We have also established
that at zero frequency the lifetime is always less than in the
limit of large frequencies.

These analytical findings for the lifetime of the P mode
have been confirmed by our numerical simulations of the
stochastic Landau-Lifshitz equation. Moreover, the numerical
simulations of this equation for not too small amplitudes of

the rotating field permitted us to solve the problem of the
lifetime of the Q mode. Since in this case the precession angle
is a periodic function of time, which can cross the anisotropy
barrier, the solution of this problem is of particular interest. It
has turned out that, although the precessional angle depends
on time, the lifetime of the Q mode practically does not depend
on this time, i.e., on the precession angle. We have also verified
this result by calculating the lifetime from the first-passage
time distributions that correspond to different values of the
precession angle.
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