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ABSTRACT 
Using a positive semidefinite operator technique we deduced exact ground states 

for a modified diamond chain described by a non-integrable Hubbard model with on-site 
repulsion. Our results are valid for arbitrary length of the chain and strength of the Hub-
bard interaction. For the analyzed quasi 1D chain structure we found that two flat bands 
are present in the bare band structure of the system, both for zero and for a fixed value 
of magnetic field. We obtained ground states of nonmagnetic and ferromagnetic insula-
tor type and studied their physical properties. 
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INTRODUCTION 
The investigations of nanostructure objects with itinerant electrons are one 

of the most quickly progressing fields in the modern material science.These 
systems present a drastic change of physical properties under given conditions, 
e.g. fixed external magnetic field or given site-selective gate potential[1, 2].  In 
this frame we investigate below electron systems where the interaction between 
the electrons is the well-known Hubbard on-site term. Our goal is to find exact 
ground-state wave functions for arbitrary strength of the interaction, thus we do 
not use perturbation theory or any other approximations. It is worth to mention 
that the full exact solution of the Hubbard model is still unknown for dimen-
sions larger than 1. In the paper [1] a new method was developed and applied 
for  the  diamond  Hubbard  chain.  In  this  paper  we  used  the  same  method  to  a  
similar, but modified system.  

THE STUDIED SYSTEM 
Figure 1. shows the modified Hubbard diamond chain we analyzed. The 

sites of the chain for the cell defined at the site i are denoted by  si r , where s 
= 1, 2, 3 is the sublattice index. The Bravais vector of the lattice is a, horizontal 
in the figure. NC is the number of unit cells, N is the number of electrons, NS is 
the number of sites, and one has NS = 4NC. 
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The operator †

,ic  creates an electron with spin  in at site i, †
, , ,i i in c c

is the particle number operator, while 
, ,

1

Û
SN

i i
i

n n  the operator of the on-site 

Coulomb repulsion, U>0.  The movements of the electrons are described by the 

hopping matrix elements t, ||t , t  and t3. 

 
Fig. 1 – The Hubbard chain, Case I 

 
The first one characterize the nearest-neighbor hoppings (except for sites 

i+r3) while ||t and t  the second nearest neighbor terms parallel and perpendic-
ular to a, respectively. The last hopping term t3 refers to movements along the 
external leg, and the epsilons are one-site one particle potentials. The system is 
placed in an external magnetic field perpendicular to the plane of the chain and 
described by the Peierls phase factor delta. During the calculations arbitrary but 
fixed N and periodic boundary conditions are taken into account along the 
chain. One notes that the presence of the external legs into the system allows 
the use of external site selective gate potentials in order to modify and easily 
manipulate the potential T3 and therefore the physical behavior of the system. 

ABOUT THE METHOD 
First we calculate the non-interacting band-structure of the system. For 

this we have to write the Hamiltonian without the ˆUU  term into the k-space 
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by Fourier transformation. Then, by diagonalizing the obtained expression we 
derive an algebraic equation with four unknowns – as we have four sites in the 
primitive cell – and the solutions of this equation as a function of k gives the 
four  bands  of  the  bare  band structure.  We obtained that  the  lowest  two bands  
are always flat. 

To find  the  GS of  the  interacting  system,  we use  the  method of  positive  
semidefinite operators. A Hermitian operator is called positive semidefinite if 
its spectrum is nonnegative, i.e. its lowest eigenvalue is zero or positive. There-
fore if H+ is a positive semidefinite Hamiltonian and we have an eigenvector of 
H+ with zero eigenvalue, then this vector belongs to the ground-state (GS) sub-
space of H+. Suppose that we manage to write the H Hamiltonian of the inter-
acting system in the form  

 H H C  (1) 
 
where H+  is positive semidefinite and C is a constant which depends on 

the parameters of the Hamiltonian. Now if g|  is the most general element of 

the kernel of H+, then g|  is the GS vector of H and the corresponding GS 
energy is  C.  Thus  in  our  method we transform the  Hamiltonian  into  the  form 
(1) and calculate the kernel of H+.  

On this line we managed to transform the Hamiltonian into the form 

 , ,
†

, ,
†

1

ˆ ˆ ˆH =
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i i i i
i

A A B B UU KN  (2) 

 
where the terms A and B are block operators which represent a linear 

combination of fermionic operators defined on a finite domain of the system. 
One can easily see that the terms in the bracket are positive semidefinite. On 
the other hand, the Hubbard-term is positive semidefinite, and presents its 
smallest possible zero eigenvalue if there are no doubly occupied sites in the 
system. Furthermore, ˆC KN , where N̂  is the operator of total particle 
number of the system. 

THE OBTAINED GROUND STATE 
We obtained the GS wave vector in the form 
 
 †

,
ˆ| | 0

igs i
i

G  (3) 

where | 0 is the vacuum state. We consider the †
,

ˆ
iG operators as the 

most general linear combination of creation operators with acting on each lat-
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tice site of the system. Furthermore, one takes into consideration that the lowest 
energy value must be provided by a state without doubly occupied sites. We 

found the following two families of †
,

ˆ
iG  operators at 0 : 
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A similar expression is obtained for / 2 . So we have two sets of op-

erators, namely 
†
, iiD  and 

†
, iiE  which can appear in the GS vectors, each with 

NC terms for both up and down spins. Every vector from the kernel of the trans-
formed Hamiltonian can be written as a product of these operators. The number 
of the operators in the product specifies the number of electrons in the system. 
The most  general  GS vector  is  obtained as  a  linear  combination  of  these  vec-

tors. As 
†
, iiD  and 

†
, iiE  have no common lattice-points for different i (except 

for 
†
, iiD  and †

1, iiE ), the spin indices i  of them for different cells are usu-

ally independent. For the same cell, the 
†
, iiD  and 

†
, iiE  operators must have 

the same spin index in order to avoid the double occupancy. Physically this 
means that the solution is globally a non-magnetic phase up to the electron 
number N<2NC-1. For the case when in the same cell both operators D and E 
are present, the cell itself is ferromagnetic and behaves as a ferromagnetic clus-
ter. However, different cells are magnetically not correlated. This is the reason 
why the system globally is non-magnetic if  N<2NC-1. At N=2NC-1 or N=2NC 
the D and E operators touch each other, the connectivity condition is satisfied 
and the system becomes ferromagnetic.  

 
We also calculated the mean value of the long range hopping function 

 1 1

†
1 , 1 ,ˆ ˆ| . . |

|
gs r ra r gs

gs gs

c c H c
 (5) 

 
as a function of r, more precisely the logarithm of the absolute value of 

this function. We obtained that this is close to a straight curve, which means 
that the long range hopping function is exponentially decreasing. Thus we can 
conclude that the ground state electrons are localized, although not exactly to 
one lattice point. Therefore the GS is an insulator, albeit not a band insulator.  
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SUMMARY 
An itinerant diamond chain with external link is analyzed in the presence 

of a perpendicular external magnetic field in the frame of a non-integrable 
Hubbard model. For this chain exact ground states are deduced by a method 
using positive semidefinite operator properties. The ground states turn out to be 
nonmagnetic and ferromagnetic in character being localized in the thermody-
namic limit.  
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