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Abstract We present a procedure for the derivation of homogeneous solutions for piezoceramic layers within
the framework of electroelasticity. The proposed approach simplifies considerably the Lurié (J Appl Math
Mech 6:151-169, 1942) method. Two cases of mechanical boundary-conditions for piezoceramic layers are
examined, namely, when the bases are (a) built in, and (b) free from the influence of forces. In both cases, the
bases of the layer are assumed to be covered by grounded electrodes. It is shown that in the case of boundary
conditions of the first type and for the symmetric, with respect to the mid-surface of the layer, electro-elastic
state, the homogeneous solutions do not contain any biharmonic terms. We also calculate the distribution of the
characteristic values of the corresponding spectrum problems for every given type of boundary conditions. The
derived homogeneous solutions can be used for solving boundary-value problems for piezoceramic cylinders
and layers within the framework of electroelasticity. We illustrate our approach through a practical example
considering an oblique-symmetric boundary-value problem for layers which weaken due to a side to side
elliptic cavity.

1 Introduction

Over the last 10 years, the research in the area of deformed solid body mechanics, the so called electroelasticity
has been intensively developed due to the rapid increase of the production of piezoceramic transformers with a
wide range of applications ranging from ultrasonics to radioelectronics and from data acquisition to computer
engineering systems. Based on the analysis of certain physical properties of natural crystals and artificial
ceramics (which undergo certain treatment), electroelasticity studies the mechanics of bodies subject to the
action of coupled electric and mechanical fields.

After the discovery of the piezoeffect by Jack and Pierre Curie and the classical analysis by Voigt [2]
the theory of electroelasticity was symmetrically developed (see for example [3-9]). Various methods for the
solution of boundary-value problems can be found in [5-7,10-29]. The fact that the linear state equations
for preliminary polarized piezoceramics are analogous to the relations for crystals with hexagonal symmetry
allows the formalization of fundamental boundary-value problems within a common framework. The linear-
ization procedure for the electroelasticity equations for piezoceramic media has been introduced by Mason
[6]. Experimental data have established the fact that as far as the mechanical and electrical properties are
concerned piezoceramics behave like transversely isotropic materials. Over the past years, there have been a
large number of publications in the field of static and dynamical theory of electroelasticity. Due to the coupling
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of mechanical and electrical fields with anisotropy, the analysis of dynamical problems is not a simple task. In
this paper we demonstrate the use of complex analysis in order to deal with two-dimensional boundary-value
problems of electroelasticity. The proposed approach reduces the analysis to the theory of analytical functions.
For piezoceramic materials, we express the mechanical and electric field quantities using three analytical func-
tions of complex variables. Such variants of complex representations are suggested by various authors (for a
review cf. [20,30,31]). In [32] and making use of the methods appearing in [30], the authors studied the stress
concentration on the contour of an elliptic hole on a half-plane under the influence of a point electric charge
on its boundary. The boundary-value problem of fracture mechanics for a linear crack located at the bound-
ary between a piezoelectric and a conductive medium is solved in [33]. In the monograph [20], the authors
examine fundamental static problems of electroelasticity for a piezoceramic plane and a half-plane. In the
same work, the authors have constructed the Green’s functions for an infinite plate weakened by a linear crack
or a rigid linear inclusion; the problem of averaging the electroelastic properties of piecewise-homogeneous
piezoceramic structures using the method of integral equations is also considered.

The solution of three-dimensional (3-D) problems of electroelasticity confronts to certain mathematical
difficulties. In the work of Mindlin [34], it was presented a 3-D problem of electroelasticity for a plate with
generalized anisotropy. The problem was solved using the variational principle considering both the mechan-
ical displacements and the electric potentials which were expressed as exponential functions of the thickness.
An effective method for solving 3-D problems was developed by Lurié [1], who derived for the first time the
homogeneous solutions for elastic layers with bases free from stresses. The aim of the present work focuses
towards the simplification and generalization of the above mentioned method.

2 Formulation of the problem

Let us consider a Cartesian system of reference and a piezoceramic layer defined by —oco < xi,
x3 < 00, |x1| < h. The vector of the electrical field which contributes to the preliminary polarization of
the ceramic is directed across the x3-axis. The complete system of equations, describing the coupled electro-
elastic layer, reads as follows [3,21]:

Equations of equilibrium:

djo;j =0, 09; =0/0xj, ey
Equations of electrostatics:
4D =0, E;=—dg, 2)
Cauchy relations:
gij = (Qjuj+0ju;)/2 (G, j=1,2,3). 3)

The constitutional equations of the preliminary polarized along the Ox3-axis piezoceramic are given below:

o1 = chen + chen + 05833 —e31E3, om =chen +cken + CF3833 —e31 E3,
o33 = ci3(e11 +e20) + ch3e33 — ex3E3,  o1p = (cfy — ch)enn,
013 = 2chye13 — e1sEr, 023 = 2ci03 — e1sEn, “4)
Di =&}, E1 +2e15613, Do = &} E2 + 2e15623,
D3 = e5,E3 + e31 (811 + £22) + €33633.
Here, we deal with the following boundary conditions:

(a) the bases of the layer are built-in and grounded, that is
ui(xi, x2, £h) = us(x1, x2, £h) = u3(x1, x2, £h) = @(x1, x2, £h) =0, )
(b) the bases of the layer are unloaded and grounded, i.e.:

o13(x1, x2, £h) = 023(x1, X2, £h) = 033(x1, X2, £h) = @(x1, x2, £h) = 0. (6)
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Intherelations (1)—(6), u; (41 = u, up = v, u3 = w) and 0y}, &;; are the components of the elastic displacement
vector, the stress and strain tensor components, respectively; c5 = Cij, €jj, efl. = g, are the elastic constants
for a constant electric field, the piezoelectric and the dielectric constants for constant deformation, respectively;
E;, D;, ¢ are the components of the electric field intensity, electrical displacement and the potential of the
electric field, respectively.

The system of equations (1)—(4) takes the form [35]:

VV2u 4 cqd3u+ 010 =0, V> =07 + 93,
VY20 + casd3v + 90 = 0,
casViw + 03333211) + c03(01u + dv) + e15V2<p + e33832<p =0,

(7N
811V2(p + 833832g0 —ed3(01u + drv) — elsvzw — 633332w =0,
0 =U(@1u + 0v) + cdzw + ed3g,
U= (ci1+c12)/2, V=_(c11—c12)/2, c=ci13+cas, e=ej5+e3.
On the basis of the Helmholtz theorem a vector {u, v, w} can be expressed as:
U=01®+ Y, v=0d-0¥, w=qQ. )

Using (8), the relationships (7), (8) take the form:

N(VVID + cisd3® +0) + B (VVAW + cuyd3 W) = 0,

N(VVAD + c4qd3® +60) — 81 (VVW + c4403W) = 0,

caaV3Q 4 33032 + V2030 + €15V + 33059 = 0, )
e11V2p +£33050 — eV2 R D — e1sVQ — €3305Q2 = 0,

0 =UV>D + c03Q + edz¢.

Solving the first two equations of (9) with respect to the function W we get:
VVAW 4 c405¥ = 0. (10)

From the combination and transformation of (9), we obtain a system of differential equations with respect to
the functions @, 2, ¢ reading:
c11V2<I> + C44832<D 4+ c3Q2 4+ edzp = 0,
cuuVIQ 4 c33052 + V203 + 15V + €335 = 0, (11)
811V2(0 + 833832(p — 6V233CD — €15V2§2 — 6333328'2 =0.
Using the following symbolism for the differential operators 334 = A, 33A = A", V>A = B*A, the system
(10) and (11) takes the form:
Vﬁz\ll + eV =0,
L1 BED + cas® +cQ +eg =0,
B+ Q'+ cBPO +e1sple + e’ =0,
e11B%0 + £330 — ef’® — e15p7Q — e3 Q" = 0.

(12)

Here, we seek solutions of these equations in the following form:

® =ch(ax3)A;, Q= 'sh(ax3)A2, ¢ = B 'sh(rx3)As,
W =cos(Bxa/m3) A4, 13 =cas/V, A= Ai(x1,x2), (13)
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where A is an operator to be determined. Hence the three relations in (12) read:
ch(Ax3) [(c11B% + caad®) Ay + cAB™ Ay + erp™ ' A3] = 0,
B~ 'sh(hx3) [eB 1AL + (casB® + c3307) Az + (1587 + e331P) Az ] = 0, (14)
B~ 'sh(hxz) [ —eBAA| — (e15B” + e3327) Az + (e11 B + €332 A3] = 0.
The determinant of the above system is given by
D(\) = B 2ch(Ax3)sh®>(Ax3) (1 A8 + c2B2A% + c3B*A% + cuBO)
where:
c1 = caa(cnzens +e3), ca = cii(caaers + 6%5),
€2 = Caac33611 + C14833 + Cl1C33833 — Pe33 + e%c33 — 2ceess + 2erseszcas + 1133,
€3 = C11C44€33 + 642;4811 + e3acienn — cerr + e*cas — 2ceers + 2ezzerscry + C44ef5.

At this point, we introduce a new variable = i~ !. Under this representation, the relationship D(%) = 0
takes the following form:

cap® — 3t + eop® — ¢ = 0.

The roots of this characteristic equation are 41, 2, £o [35].
For the piezoceramic material PZT-4, these take the following values:

n1 = 0.8307013, pp = 0.903579 4 0.1693901i.

For this case, the eigenvalues of the system (14) read:
Mo =%iB/u1, Aza=Eif/usr, rse=xif/ila, A =i, As=hrs, ko= A3.

Consequently, as a total we have six choices for the eigenvectors A®) = {Agk), Ag‘), Agk)} (for each eigen-
value Ag),

1 1 1 (1) () 70
(A, AP, APy, AP, A, APy,
2 2 2 2 2 2 (2 (2 (2 T2 72 (2
where

k k k k k k
AP =y P pal, Al = yPawpral,

k . k .
P(Mk)Vl( = —ipy (), P(Mk)yz( ) = ipaQur),

p1(p) = ersciip® — (exzerr + erscas — ec)u® + exzcaa,
p2() = cricaap® — (cdy + criezs — M + cxzeus,
() = (ecas + e150) > — (ecas — exzc) .
The calculations for the piezoceramic PZT-4 give:
) =0.887i, yP =—-0.347+0.8871,
) = =5261 x 10%i, 2 =8.007 x 10° 4+ 1.278 x 107 i.
Using (13), we finally obtain:
W = cos(Bx3/u3)As,  p3 = caa/V,
® = 2cos(Bx3/p1)ReA\” + 4Refcos(Bx3/u2) AP},
Q = —2ay1 B sin(Bxs/u)ReA(” — dm{y? Bsin(Bxs/u2) AT}, o =Im{y"}, (15
¢ = —2ay Bsin(Bxs/uDReA ) — dlm{y P Bsin(Bxs /) AP, ax = Im{y{).
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Consequently, from (8) and (15) we derive the components of the displacement vector, the electric potential
and the dilatation of the layer, respectively, as:

u = 2cos(Bx3/p)dReA]” + 4Refcos(Bx3/ua)h A} + cos(Bxs/13)dr A,
v = 2cos(Bx3/p1)hReAl” + 4Re{cos(Bx3/u2)h AT} — cos(Bxs/u3)d) As,

w = —2ay B sin(Bxs/p)ReA") — 4Im{y? Bsin(Bx3/u2) AP}, (16)
¢ = —2a B sin(Bxs/u)ReA) — 4Im{y? Bsin(Bx3/u2) AP},
2
6 = —281 8% cos(Bxs/i1)ReA|” — 4Re($, 47 cos(Bx3/u2) A},
(N (1) () (2)
c +e c +e
sy _Ntent o, o ten”
ij 12

Taking into account the relationships (16) and the constitutive equations (4) we obtain the following expressions
for the mechanical stresses and the vector of the electric induction:

011 = 22V + C15%) cos(Bx3/uReA + 4Re((2V 0} + C2%) cos(Bxz/u2) A}
+ 2V cos(Bx3/13)0102A4,

022 = 2(2V03 + C18%) cos(Bx3/m1)ReA” + 4Re((2V 03 + C282) cos(Bx3/12) AP}
— 2V cos(Bx3/u3)0102A4,

o012 = 4V cos(Bx3/u1)010:Re A + 8VRe{cos(Bx3/142)9102A\P} + V cos(Bxz/u3) (93 — 87) Aa,

033 = 2C3 % cos(Bx3/u1)Re Al 4+ 4Re(Cy B2 cos(Bxz/u2) AP),

o13 = —2CsB sin(Bxz/p1)d1ReA\” — 4Re{CeB sin(Bx3/p2)d1 AP} — caaps! Bsin(Bxz/pz)drAa,
023 = —2Csp sin(Bx3/111)rRe A} — 4Re{Cof sin(Bxs/12) A} + caspny ' B sin(Bxs/113)d) Aa,
Dy = —2FBsin(Bx3/p1)diReA]” — 4Re(Fyp sin(Bx3/p2)d A} — erspy ' B sin(Bxs/1u3)dpAs.,
Dy = —2F B sin(Bxs/iu1)02Re Al — 4Re{ FaB sin(Bx3/112)92 AP} + ersus! Bsin(Bx3/u3)d1 Aa,
D3 = 2F382 cos(Bx3/p1)ReA) + 4Re{ Fy 2 cos(Bx3/p2) AP},

(1) 2) )

1 1
_ 013)/1( ) + e31y, ci3y, tesy, ™

1
033)/1( )+ €33),

Ci=c12 , Cha=cp2— - , C3=ci3— ,
ip e ip
2 ) n (€8] (@) (2)
¢33y, + ey ca4  caayy Feisy, caq  caay t+eisy
Ca=ci3 — —— 2 Cs=—4—L 22 c=—4 =L 272
172%) M1 l n2 l
1 1 2 2
13 i ’ j1%) i '
(1) ) 2) 2)
e3y; — €33V, €3y — €33V,
F3 =e31 — . e 2 Fp=e3 — . o 2 (17

3 The case of a piezoceramic layer with a built-in base

In this section, we proceed to the derivation of the homogeneous solutions for the system (7), when its bases
are built-in and are covered by thin grounded electrodes. Using (16), the boundary conditions (15) lead to the
following system of differential equations:

01{2 cos(Bh/1u1)ReA” + 4Re[cos(Bh/uz) A |} + da{cos (Bh/uz) As} = 0,
82(2cos(Bh/pu1)ReA]" + 4Re[cos(Bh/u) A |} — 1 {cos (Bh/u3)As) = 0, (18)
201 B sin(Bh/p)ReAT” + 4Im{y > B sin(Bh/ ) A} = 0,

2021 B sin(Bh/ju)ReA\” + 4Im{y? Bsin(Bh/uz) AP} = 0.
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The first two equations of the system (18) are the Cauchy—Riemann conditions [36] which guarantee the
analyticity of the function f(z) (z = x1 + ix3). Therefore, we have the following relations:

cos(Bh/uz)As = Re f(2),
2cos(Bh/u1)ReA" 4+ 4Refcos(Bh/u2) AP} = Imf(2).

Consequently, we obtain the following system of equations with respect to Aa, ReAgl) and A§2) = ReAiz) +
: 2,
iImA™:
cos(Bh/u3)As = Ref(2),
1ReAV +115ReA? +113ImAP = Im £ (2), (19)
LiReA" +1nReA? + 1ImA? =0,
iReA" + IpReA” + 133ImAY =0, (20)

where:

Iy =2cos(Bh/my1), l12 —ili3 =4cos(Bh/u2),
by = k™' Bsin(Bh/u1), I —ily = 20 (2 Jy) B sin(Bh/u2),
I3 = h™' Bsin(Bh/u1), Il —ilz3 = 20~ (\2 1yiD) B sin(Bh/ ).

The solution of (20) is given by:

[o¢]

A= Yu(x1,x2) +Re f(2)

n=1

where ¥, are the metaharmonic functions which satisfy the Helmholtz equation:
(V2 =8, =0, 2h8, =n@2n— Dz, (n=1,2,...).
By proceeding to the integration of the system (20) we get:
ReAlV =112, ReA® =L, mA® =130, 1)

where L1y, L2, L3 are the algebraic complements of the elements £11, £12, 13, respectively.
The last equations of the system are satisfied as identities, whereas the first one takes the form:

D(BHQ =Imf(2), (22)

where D(f?) is the determinant of the system.
By introducing the function H = *Q, and after some transformations, the relationships (21) take the
form:

ReA(" = 4h~2ap~2 sin(Bh /o) sin(Bh/uz)H,

AP = 2ih BB sin(Bh /1) sin(Bh/u2)H, (23)
2) -2
7/1( )Vz( ) )/2(2))/1(2)
a=Imy~5=5r1. b="5"m|
Vi " 2N
and (22) yields:
LBHH=1m f(z), L(BH =p*D(BD. (24)

The operator L(A?) is an integer function of 82 = V2. Consequently, the solution of the homogeneous
equation L(B%)H = 0 can be constructed by combining the metaharmonic functions. More specifically, if
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Table 1 The values of the real roots of (2.8) for the ceramic PZT-4 for h = 1

i o il — O

1 0.71464690 2.19985797
2 2.91450487 2.76452159
3 5.67902646 2.66309667
4 8.34212313 2.6203834
5 10.96250653 2.60851654
6 13.57102307 2.60765009
7 16.17867316 2.60875362
8 18.78742678 2.60946094
9 21.39688772 2.60970344
10 24.00659116 2.60974607
11 26.61633723 2.60973903
12 29.22607626 2.60972998
13 31.83580624 2.60972601
14 34.44553225 2.609725
15 37.05525725 2.60972494
16 39.66498219 2.60972503
17 42.27470722 2.6097251
18 44.88443232 2.60972511
19 47.49415743

Table 2 The values of the complex roots of (2.8) for the ceramic PZT-4 for h = 1

i Req; Imo; Rea;y1 — Rew; Imejy — Imey;
1 3.24090725 1.11861773 2.79030712 0.5524113
2 6.03121437 1.67102903 2.82018529 0.52901542
3 8.85139966 2.20004445 2.83404817 0.52882108
4 11.68544783 2.72886553 2.83799078 0.53070892
5 14.52343861 3.25957445 2.83871978 0.53171564
6 17.36215839 3.79129009 2.83875095 0.53205758
7 20.20090934 4.32334767 2.83870879 0.53214261
8 23.03961813 4.85549028 2.83868645 0.53215652
9 25.87830458 5.38764680 2.83867914 0.53215656
10 28.71698372 5.91980336 2.83867741 0.53215551
11 31.55566113 6.45195887 2.83867714 0.532155
12 34.39433827 6.98411387 2.83867716 0.53215485
13 37.23301543 7.51626872 2.83867719 0.53215481
14 40.07169262 8.04842353 2.83867719 0.53215481
15 42.91036981 8.58057834 2.8386772 0.53215481
16 45.74904701 9.11273315

(V2 —a®>)u = 0 the homogeneous equation (24) takes the form of L(a*)H = 0. Therefore, the problem is
reduced to the determination of the roots of the complex equation:

L(@®) =0,
L(ot2) = 4(hoc)_2{2a cos(ah/wy) sin(ah /) sin(ah /) + ib sin(ah /1) cos(ah /) sin(ah/m)  (25)
—ibsin(ah /) sin(ah/pus) cos(ah/fiz)}.

For the most known materials (PZT-4, PXE-5) there are general particularities regarding the spectrum dis-
tribution {a;} of the characteristic equation (25): the spectrum is discrete and symmetrically placed on the
complex plane, while its accumulation point is at infinity. There are three asymptotic distributions of {a; }, one
of which is the real axis, whereas the other two are the lines arg(a) = £v, (v # 0); the angle v is determined
from the electrostatic properties of the material. The magnitudes of the characteristic values {a;} are given in
Tables 1 and 2.

For i > 19, the real values of a; can be calculated using the recursive formula:

aiy) — oy = wh ™y &~ 2.609725115.
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Fori > 16, the complex values of a; can be calculated using the recursive formula:
Rew; 1 — Reo; = mh™'Reus ~ 2.8386772,
Ime;+1 — Imey; = wh™ ' Tmpp ~ 0.53215481.

The solution of (24) reads:

M2 L2
8{au + Im(bjin)}’

H=2Re ) ¢, +Almf(z), A= (26)

where ¢, are metaharmonic functions that satisfy the Helmholtz equation (V2 — a,zl)@n = 0, with a, being
the roots of the characteristic equation (25).
From (23), the relation (26) yields:

ReA(" = 4ah™>" (a2 sin(enh /) sin(@nh /1) @n + @y 2 sin(@nh/ (1) sin(@nh / fi2) @n)
n

+4Aa(paiin) " Imf (2),
2) A5 —2 —2 . . - -2 .- .- - =
AT = 2ibh™2 Y (o sin(@nh/ ) sin(onh/ i2)gn + &, sinGnh/ 111) sin(@nh /12) @)
n

+2i Ab(u1 fi2) ' Im £ (2).

After all these procedures, we can now determine the homogeneous solutions of the problem; the components
of the complex electroelastic field in the layer read:

uw=h""Re D a;*{am cos(@,x3/j11) + @z, cos(@y X3/ 112) — a3y cOs(cnx3/j12)}019n

n
oo
+ D cos(8,x3/143) D2V,
n=1
v=h"Re D o, *{am cos(enxs/ 1) + azm cos(ox3/12) — a3 0S(@nx3/[12)}026¢1n

n

o
- Zcos(8nX3/M3)311//n,
n=1
- B | ' 5 . _2 . _
w = —h ZImZan Yy Par sin(@axs /i) + v an sin(enxs /o) + 7,7 az sin(@nx3/ 22) o,
n

o13 = —h"*Re D a;  {Csai sin(@,x3/j1) + Coatan sin(e,x3/p2) — Coazy sin(enxs/fi2)}20

n
oo

—casiy D 8usin(8ax3/43)01 Y,
n=1

o023 = —h"*Re D a; {Csai sin(@,x3/j1) + Coatan sin(e,x3/p2) — Coazy sin(enxs/fi2)}20
n

oo
+ Caspy ' D 8 sin(8,x3/13)1 Y,

n=1

033 = h™*Re D {C3ain cos(ctnx3/111) + Catzy c0s(0nx3/112) — Caty cO8(€X3/j12)} P,
n
- — 1 . 2 . -2 . .
¢ = —h~*Im Z% 1{)/2( D, Sln(otnx3/m)+3/2( Dy, sin(e,x3/102) + )/2( D az, sin(@,x3/12)}pn,
n

am = 16a sin(a,h/pu2) sin(aph/itz),  az, = 8ibsin(ayh/m1) sin(anh/fiz),
az, = 8ibsin(a,h/y) sin(anh/p2),
(V2 =8 =0, 2h8, =7 (2n — Dz, (V> =8))p, =0.
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The metaharmonic functions ¢, which appear in the above solution determine the potential solution, whereas
the metaharmonic function 1, determine the vortex solution and a,, are the roots of (25). As can be seen from
the structure of the homogeneous solution, for this particular case of the boundary conditions the biharmonic
solution is absent.

4 The case of piezoceramic layers with unloaded bases

In this section, we proceed to the derivation of the homogeneous solution for the system (7) for piezoceramic
layers, the bases of which are unloaded and are covered by thin grounded electrodes. Using (16) and (17) the
boundary conditions (6) reduce to the following system of differential equations:

01{2Csp sin(Bh/p1)ReA(” + 4Re| CoB sin(Bh/u2) AP 1} + dacaapty ' B sin(Bh/p3) As) = 0,
0{2Csp sin(Bh/u)ReA" + 4Re| Cop sin(Bh/u2) AV |} — d1{caans ' Bsin(Bh/uz) Ag) = 0, (27)
2C347 cos(Bh/m1)ReA]” + 4Re{C4p? cos(Bh/uz) AT} = 0,

2a21 B sin(Bh/u)ReA\” + 4Im{y? B sin(Bh/u2) AP} = 0.

Thus, as in the previous case the first two equations of the system (27) represent the Cauchy—Riemann
condition [36] which guarantees the analyticity of the function 2Cs f”(z) with complex variable z = x| +ixp.
Consequently, we obtain the following relations:

caspy' Bsin(Bh/u3)Ag = hCsRe f" (2),
2CsB sin(Bh/ju)ReA\” + 4Re{Cs sin(Bh/u2) AP} = hCsIm £ (z).

At this point we introduce the following two biharmonic functions:

Q9 = %Im{Zf’(z) + 1@}, Wo= %Re{Zf’(z) + f2(2)}
where f1(z), f2(z) are arbitrary analytic functions. It is obvious that the following relationships are valid:
Vidg =Imf"(z), VW =Ref"(2),
on the basis of which we get the following differential equation with respect to A4:
caay ' Bsin(Bh/p3)As = hCsV>Wy, (28)

as well as a system of equations with respect to the functions ReA(ll) and Agz) = ReA(lz) + i ImAﬁz). These
read as follows:

111ReA" +115ReA? +1131mA® = V2,
LiReA"” + 1HReA? + 1h3ImAP =0,
iReA" + 1pReA? + 1331mA'® =0,
I =2k~ 'Bsin(Bh/wm1), lia —ili3 = 4h~ " (Cs/Cs)B sin(Bh/u2), (29)
Ly = B2 cos(Bh/ 1), ln —ilxz = 2(C4/C3)B% cos(Bh/u2),
I3 = h™'Bsin(Bh/pm1), I3 —ils3 = 2h_1(y2(2)/y2(1))/3 sin(Bh/u2).
The solution of the Eq. (28) has the following form:

o0
Ay = 25;21//;1()61,)62) + CsV 1y,

n=1

where 1/, are metaharmonic functions satisfying the Helmholtz equation (V2 — 8,%)1//,, = 0, hé, = Tnus,
nm=12,..).
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Table 3 The values of the real roots of (3.8) for the ceramic PZT-4, when h=1

o iyl — O

1 2.77412489 2.69187262
2 5.46599751 2.62695527
3 8.09295278 2.6060386
4 10.69899138 2.60519743
5 13.30418881 2.60771139
6 15.91190020 2.60919939
7 18.52109959 2.60969099
8 21.13079058 2.60977159
9 23.74056217 2.60975423
10 26.35031640 2.60973499
11 28.96005139 2.60972681
12 31.56977820 2.60972481
13 34.17950301 2.60972474
14 36.78922775 2.60972495
15 39.39895270 2.60972508
16 42.00867778 2.60972511
17 44.61840289

Next, we proceed to the integration of the system (29). By introducing the function €2 by
ReA = 1119, ReA™ =L@, A =130, (30)

where L1y, L12, L13 are algebraic complements of the elements /11, /12, /13, we reduce the first equation of
the system to the form

D(BAQ = V> dy, (31)

where D(?) is the determinant of the system.
If now we set H = ,8452, after some transformations, the expressions (30) read:

ReA" = 4n"Im{abp ™" cos(Bh/pm2) sin(Bh/fi)IH, aCs=Cy, y"'b= >,

AP = 2ih™ (BB~ cos(Bh /1) sin(Bh/fiz) — ap~" sin(Bh/ 1) cos(Bh/fiz))H.
Equation (31) takes the form

(32)

L(BHH = V*d, L(B*) = B~*D(B?). (33)

As in the previous case the operand L (2) is an integer function of 2 = V2 and thus the solution of the homo-
geneous equation L(B2)H = 0 can be expressed as a combination of the metaharmonic functions. Namely,
the problem is reduced to the determination of the roots of the complex transcendent equation

L(@*) =0,
L(a®) = 4h™2{2.f cos(ah/m1) sin(ah/m2) sin(ah/fi2) + id sin(ah /1) cos(ah/ws) sin(ah/ fi2)
—id sin(ah /) sin(oh /o) cos(ah/in)}. (34)

The distribution of the spectrum {«;} of the characteristic equation (34) has the same properties (characteris-
tics) as the distribution of the spectrum of the characteristic equation (25) for the first type of the boundary
conditions. The characteristic values {«;} are given in Tables 3 and 4.

The recursive formulae for {¢;} have the same form as for the case examined in the previous section.

The resulting distribution of the spectrum {e;} is in agreement with the well known results derived for
analogous boundary conditions [1].

Now, returning to Eq. (33) we express its solution in the form:

_ M2 2
H = 2R 2 2 Ady, A= ;
€2 A0 8(/ 101 — Im(djun))

n

where ¢, are metaharmonic functions satisfying the Helmholtz equation (V2 — oe,%)wn = 0, with o, being the
roots of the characteristic equation (34).
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Table 4 The values of the complex roots of (3.8) for the ceramic PZT-4, when h=1

Reai Imozi Reai+1 - Rea,- Imoei+1 - Ima,-

1 1.85450478 1.03764675 2.85632368 0.57868631
2 4.71082846 1.61633306 2.82988502 0.52074007
3 7.54071348 2.13707313 2.83654894 0.52610355
4 10.37726242 2.66317668 2.83881525 0.53029076
5 13.21607767 3.19346744 2.83895429 0.53173438
6 16.05503196 3.72520182 2.83880135 0.53209699
7 18.89383331 4.25729881 2.83871478 0.53215942
8 21.73254809 4.78945823 2.83868541 0.5321614
9 24.57123350 5.32161963 2.83867818 0.53215757
10 27.40991168 5.85377720 2.83867703 0.5321556
11 30.24858871 6.38593280 2.83867705 0.53215498
12 33.08726576 6.91808778 2.83867714 0.53215482
13 35.92594290 7.45024260 2.83867718 0.53215481
14 38.76462008 7.98239741 2.8386772 0.5321548
15 41.60329728 8.51455221 2.8386772 0.53215481
16 44.44197448 9.04670702

The relationships (32) take the following form:
) _ gl B P - = : -
ReA("” = 2ih™" > o, (ab sin(ayh/12) cos(anh/ji2) — ab cos(onh/i2) sin(enh/ji2))gn
n

+2ih~! Z &;3 (ab sin(@uh/mn2) cos(@nh/fi2) — ab cos(@yh /) sin(@nh/ i) @,
n

ab 2 ab [ 1 1 5
M2 Mo\ sy 303
2) A —1 3,7 . =N = -
A =2ih Zan (b cos(aph /1) sin(aph/n2) — asin(eh/pr) cos(onh/12))gn

+2ih71 Y3, (b cos(@nh/ ) sin(@nh/fi2) — asin(Gnh /i) cos(@nh/ 12))@n

b a b {1 1 a1 1
+2iA(_——1)q>o—iAh2 N 5+—= - —=+=) )
M2 M1 M2 \ uy  3p5 mr\3uy 5

After this and some transformations, we can find the homogeneous solutions that we seek. The vortex part of
the solution reads:

0]
u= 8,2 cos(8ux3/13)drwn + CsV ™~ o2Wo — Cs(2cas) ™13 V202 o,

n=1

e e]
v=— 8,7 cos(8ux3/pa)dn i — CsV ™ 01Wo + Cs(2ca) ™13 V201 o,

n

=1
w=0, ¢=0.

The potential part of the solution is given by

w="h""Im > o, {ai, cos(enx3/n1) — az cos(anx3/p2) + as, cos(@yx3/i2)}d1¢n

n

—B101Dg + Bzx§V281d>o + B3h2V231CD(),

v =h""m D oy far cos(onxs/ i) — azq cos(@nx3/112) + a3 08 (onx3/12)} 0201

n

—B10,dg + B2x32V282d>0 + B3h2V232CI>0,
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)

— — 1 . 2 . -2 . .
w=h"Re > a, 2y Vi sin(onxs /1) — yi> ag sin(@nxs/p2) — 7> asy sin(enxs/fia) bon
n

+Byay1x3 V2 Do,
— — 1 . 2 . -2 . _
p=nh lReZan 2{)/2( Dy, sin(axs /i) — )/2( gy sin(ayxs /1) — J/z( a3y, sin(@,x3/12)}pns
n

ain = 8[ab cos(ayh/w2) sin(anh/ fi2) — ab sin(anh/p2) cos(anh/fi2)],

axn = 8[bcos(anh /1) sin(ayh/ i) — asin(ayh/py) cos(anh/p2)l,

azy = 8[bcos(anh/uy) sin(ayh/pwz) — asin(oh/ny) cos(oh /2],
ab b a ab b a

By =8AIm{—+ — ——1, B =4AIm] 5—+ —5— — — i
M2 2 Ml Wik Maf2  P5H

ab | 1 1 b |1 1 al 1 1
By=4Alm - 5+ a5+ — |5+t |- |3t 7|
M2 | pm5 o 3u; M2 | w305 M1 |y 3pg

- ‘ - (2)
ab b a
B4=—8Alm[ + 8 - 8 ], 82%,
4!

W12 M2(2 142

(V2 =8, =0, hé, = mnus, (V> — a2)g, =0, a, are the roots of Eq. (34).

From these relationships we conclude that the biharmonic parts appear in the same form both in the potential
and in the vortex part of the solution.

It can be proved that on the base of the layer the biharmonic parts satisfy the homogeneous boundary
conditions.

5 Piezoceramic layers with side to side elliptic cavities: oblique (skew)-symmetric problems

Here, we examine the potential practical applications of the above derived homogeneous solutions. The solution
of the boundary-value problems of electroelasticity for layers with tunnel-heterogeneity is usually obtained
using the method of integral equations. The integral expressions of the solutions are constructed on the basis
of the respective homogeneous solutions, which result in a system of integro-differential equations. The deri-
vation of the integral expressions of the solutions can be obtained on the basis of the fundamental solutions.
In this case, the boundary-value problem is reduced to a system of integral equations.

At this point, we examine the oblique-symmetric (skew-symmetric) boundary-value problem of electro-
elasticity for a piezoceramic layer defined in —oo < x1, x2 < 00, |x3| < h, weakened by the existence of a
side to side cavity along Ox3 for which the transversal section is defined by the ellipse

(=§&+i&, & =Rjcose, & =Rysing, 0=<¢ <2m. (35)

We assume that the axis Ox3 has the direction of the potential lines of the electric field of the preliminary
polarized ceramic. We also assume that the bases of the layer are covered by a diaphragm, considered to be
rigid at its plane at the perpendicular (normal) direction.

On the side, the surface of the cavity acts on the stress vector { X1, X7, X3}. The bases of the layer and the
cavity are tangential to the air.

The boundary-value problem of electroelasticity is reduced to a system of singular integral equations. The
homogeneous solutions appearing in [37] have been used for the derivation of the fundamental solutions of
special form [38] for layers with bases bounded by the air and covered by a diaphragm which is considered
rigid at its plane and less rigid at the direction perpendicular at its plane. The distribution of the epicycloidal
normal stress on the boundaries of a cavity in piezoceramic layers reads:

Opo = 011 sin2 Y — o1 8in 2y + o2 COS2 v (36)

Below, we give the results of the analysis for the piezoceramic material PZT-5H [18]. They refer to the
distribution of the electrostatic fields in layers with a cavity.
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Fig. 1 Distribution of the normal stresses for the piezoceramic material PZT-5H with cavity
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Fig. 2 Distribution of the shear stresses for the piezoceramic material PZT-5H with cavity

In Figs. 1 and 2, we give the distribution of the relative epicyclical normal stress ogg /Ny (No = const) on
the boundary of a cavity with an elliptic transversal section (35) within piezoceramic layers for various values
of the parameter A = R;|/R> (R, = 1) at the section x3 = 0.8% (h = 1). Figure 1 shows the distribution
0pp/No when a normal axisymmetric loading N = Nox3/h acts on the boundaries of the cavity. Figure 2
shows the distribution of oyg/No when a shear loading T = Nyx3/ h acts on the boundary of the cavity.
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6 Conclusions

The procedure developed in this work gives the possibility to essentially simplify the derivation of the
homogeneous solutions on the basis of the Lurié method. When the bases of the layers are built-in and
grounded, the derived homogeneous solutions for the symmetric, to the mid-surface of the layer, electroelastic
state do not contain any biharmonic terms. The spectrum {a;} of the characteristic equations corresponding
to the various boundary conditions revealed some interesting properties: the spectrum is discrete, it is sym-
metrically placed at the complex plane and its accumulation point is at infinity. There are three asymptotic
distributions {a; } one of which is the real axis and the other two are the lines arg(a) = +v(v # 0), where the
angle v is determined by the electroelastic properties of the material. At infinity the difference between the
consecutive roots of the characteristic equations is of the same magnitude and depends only on the electroelastic
properties of the material (i.e. it is independent of the boundary conditions at the bases of the layer).

The proposed homogeneous solutions can be used for the investigation of boundary-value problems of
piezoceramic cylinders and layers with non-homogeneous tunnels within the framework electroelasticity.
Numerical results for the oblique-symmetric boundary-value problem for layers which are weakened due to
an elliptic tunnel cavity are also given.
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