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Abstract We present a solution methodology for dynamic problems of the theory of elasticity based on the
fundamental (F)-solutions approach for layers and semilayers containing cavities. Under the proposed solu-
tion framework boundary-value problems for three-dimensional cylindrical bodies are reduced to well-studied
systems of one-dimensional singular integral equations. With the aid of the integral Fourier transform in time,
we study the problem of impulse loading at the sides of cavities. We also demonstrate how the combination of
the proposed methodology with the approach of reflections can be used for the solution of analogous problems
for semi-infinite layers.

1 Introduction

Many contemporary problems of mechanics with both research and practical interest concern the study of the
behavior of deformed bodies, which operate under the action of dynamic fields. There are two main difficulties
in our ability to deal with such complex problems, namely (a) the one in formulating in a precise way the
mathematical equations that approximate the behavior of the problem under study and (b) the one in solving
efficiently the system of governing equations. Over the last 50 years, a vast number of approaches have been
proposed toward this direction [1–35]. In this work, we focus on bodies, which are subject to both static and
dynamic loads.

Generally speaking, mechanical structures and constructions are most often assembled from different ele-
ments, which usually have the shape of blocks or shells. When different kinds of heterogeneity, such as cracks,
openings and inclusions are present, strong gradients of mechanical stresses appear which can lead to struc-
tural failure. Because of the importance of the applications, there has been an intense interest in investigating
such phenomena. State-of-the-art numerical and analytical methods are engaged to improve the efficiency of
the analysis. In particular, the solution of three-dimensional boundary problems of the theory of elasticity is
sought by applying methods of the potential theory and uniform solutions, using superposition and eigenvector
functions, integral equations, integral transforms, as well as direct numerical methods. Other approaches based
on the theory of P-analytical functions and the general representations of the solutions are also important.

The method of uniform solutions, which was applied for the first time in [36,37] generates a system of
partial solutions for three-dimensional problems of the theory of elasticity, which satisfy uniform conditions
on flat surfaces of plates or on cylindrical borders of extended multiconnected cylinders. The basic system of
uniform solutions is derived by exploiting the symbolic method of Lurie and Prokopov [36,37]. Vorovich and
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his collaborators have proposed a semi-inverse approach for the study of boundary problems for layers under
the framework of elasticity, which in many cases simplifies the deduction of the solution [38–40].

Over the last years, the method of uniform solutions has been further advanced and generalized toward
various directions. For example, Kosmodamiansky and Zhirov have studied problems of tension and bend of
thick multiconnected piezo-passive and piezo-ceramic plates [41,48].

The methods of superposition and eigenvector functions, developed by Fridman, Grinchenko and Ulitko
[49–51] have been used to determine partial solutions for different types of boundary surfaces. The methods
of uniform solutions and eigenvector functions have been also used for the study of boundary-value problems
of elasticity for finite cylinders or layers with cylindrical cavities. In turn, the method of superposition [51] is
effective for domains with circular borders such as finite circular cylinders, layers with cavities of circular cross
sections. On the other hand, the methods of potential theory [52–55] and integral transformations [56–58] are
most-often used when the domain is bounded by contours of sufficiently arbitrary configuration [59–61].

Recently, the methods of uniform solutions have been used in combination with the approach of singular
integral equations [62–75]. However, it is noteworthy to say that here the following two main difficulties arise:
(a) a correspondence problem appears between the boundary conditions within the theory of elasticity and the
boundary conditions for the enumerable set of meta-harmonic functions involved in the uniform solutions;
(b) there is a need for normalization of the integrals that diverge on the boundary of the domain.

In this paper, we propose a method, which is based not on the uniform, but on the F-solutions approach
for layers with cavities. The matrix of F-solutions is the Green matrix, which corresponds to the forces dis-
tributed along the segment: x1 = x10, x2 = x20, |x3| ≤ h.With the aid of the derived 2h-periodic F-solutions,
the boundary-value problems for three-dimensional cylindrical bodies are reduced to well-studied systems of
one-dimensional singular integral equations having a relatively simple structure. We show how the integral
Fourier transform in time can be used to examine the problem of impulse loading at the sides of cavities.
Finally, we combine the proposed method with the method of reflections to solve analogous problems for
semi-infinite layers. The paper is organized as follows. In the following section, we give the formal statement
of the problem. In Sect. 3, we derive and discuss the so-called fundamental solution of the problem. In Sect. 4,
we derive the integral equations governing the systems behavior. Section 5 focuses on the dynamic response
of the systems under the action of pulse excitation. In Sect. 6, we present and discuss the simulation results
and we conclude with Sect. 7.

2 Statement of the problem

In a Cartesian rectilinear coordinate system Ox1x2x3, let us examine an elastic uniform isotropic layer −∞ <
x1, x2 < ∞, |x3| ≤ h, weakened by tunnel cavities along the axis x3 with a common border of the cross
section � = ∪�ν (∩�ν = ∅, ν = 1, 2, . . . , N ).We assume that �ν are the elementary closed contours without
points of self-intersection with the continuous—according to Hölder—curvatures. On the surface of cavities
S = ∪Sν , we define the vector of stresses (X1n, X2n, X3n) (x, t), x = (x1, x2, x3) ∈ S. On the bases of the
layer, the mixed-type uniform boundary conditions read:

u1 = u2 = σ33 = 0, x3 = ±h, t > 0. (1)

The problem reduces to the determination of the wave field of the displacement vector u = (u1, u2, u3) and
the stress tensor with components σi j (i, j = 1, 2, 3) with harmonic or pulse excitation of layers.

The wave field of displacements is determined by a system of Lamé equations

�u j + σ∂ jϑ + X j

µ
= ρ

µ

∂2u j

∂t2 j = 1, 2, 3, (2)

∂k = ∂

∂xk
, � = ∂k∂k, ϑ = ∂kuk, σ = 1

1 − 2ν
,

where � is the Laplace operator in R3, ϑ is the three-dimensional expansion, X j is the intensity of the body
forces, µ and ν are the module of shift and Poisson’s coefficient, respectively, and ρ is the density of the
material.

Let us define

c1 =
√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
, γl = ω

cl
, µ2

lm = γ 2
l − λ2

m, �lm = ∂2
1 + ∂2

2 + µ2
lm; l = 1, 2,
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where c1 and c2 are the velocities of propagation of longitudinal and transversal (shear) wave in the elastic
body and γ1 and γ2 are the corresponding wave numbers.

We first examine the harmonic excitation of layer; let us assume

u j = e−iωtU j , ϑ = e−iωtθ = e−iωt∂kUk, X j = e−iωt Y j , j = 1, 2, 3 (3)

where U j = U j (x), θ = θ(x), Y j = Y j (x)(x = (x1, x2, x3)) are the amplitudes of the corresponding
magnitudes.

Eliminating time t in Eq. (2) in accordance with the representations (3), we get the following system of
differential equations:

�U j + σ∂ j∂kUk + γ 2
2 U j = −Y j

µ
, j = 1, 2, 3. (4)

It is necessary to address the boundary conditions on the surfaces of the cavities reading:

Si j ni = Y jn, j = 1, 2, 3, (5)

where Si j , and Y jn are the amplitude values of the magnitudes σi j and X jn, respectively.
Let us now examine the symmetrical state with respect to the median of the plane of the layer. The ampli-

tudes of displacements and intensities of body forces can be represented in the form of Fourier series

{U1,U2, θ, Y1, Y2} =
∞∑

m=1

{U1m,U2m, θmY1m, Y2m} cos λm x3,

{U3, Y3} =
∞∑

m=1

{U3m, Y3m} sin λm x3,

U jm = U jm (x1, x2), Y jm = Y jm (x1, x2); j = 1, 2, 3,

θm = ∂1U1m + ∂2U2m + λmU3m, λm = π (2m − 1)/(2h). (6)

In this case, the boundary conditions (1) on the bases of the layer are satisfied.
Eliminating the thickness coordinate x3 in Eqs. (4) and with the aid of the representations (6) we get the

following system of equations with respect to the Fourier coefficients U jm :

�2mUlm + σ∂lθm = −Ylm

µ
, l = 1, 2,

�2mU3m − σλmθm = −Y3m

µ
; m = 1, 2, . . . (7)

To eliminate the thickness coordinate from Eq. (5) we use the following representations for the amplitudes
of the components of the stress tensor and the vector of surface load:

{Slk, Yin} =
∞∑

m=1

{
S(m)lk , Y (m)in

}
cos λm x3, l, k = 1, 2,

{
S j3, Y3n

} =
∞∑

m=1

{
S(m)j3 , Y (m)3n

}
sin λm x3, j = 1, 2, 3, (8)

Then, the boundary conditions (5) are split to a set of equalities of the form

S(m)i j ni = Y (m)jn , j = 1, 2, 3; m = 1, 2, . . . (9)

Thus, the problem is reduced to the solution of the system of differential equations (7) with boundary
conditions (9) for every specific value of m.
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3 Fundamental (F) solutions for the layer

Lets us now assume that distributed forces with linear intensities {P1, P2, P3} (x3) act along the cord x1 = 0,
x2 = 0, |x3| ≤ h. Then the Fourier coefficients of intensities of the body forces appearing on the right side of
Eqs. (7) take the form

Y jm = Pjmδ (x), x = (x1, x2), j = 1, 2, 3 (10)

where δ (x) is the two-dimensional delta function.
The F-solutions for the layer, which correspond to the mixed boundary conditions (1) are given by the

components of the matrix of the fundamental solutions of the system (7) with the right-hand sides, determined
by relations (10). The derivation procedure of the F-solutions is described in detail in Appendix A.

The true displacement values for the general case can be determined by the formulas

ul = Re

⎛
⎝e−iωt

3∑
j=1

∞∑
m=1

U ( j)
lm cos λm x3

⎞
⎠, l = 1, 2;

u3 = Re

⎛
⎝e−iωt

3∑
j=1

∞∑
m=1

U ( j)
3m sin λm x3

⎞
⎠, (11)

U ( j)
nm = i Pjm

4µ
g( j)

nm ,

where g( j)
nm are the components of the matrix of F-solutions for every fixed value m.

The expressions (11), (A7) give a representation of the waveguide properties of the layer. It is obvious that
for any frequency of excitation we can always find a number m, for which the characteristic number µ1m or
both characteristic numbers become pure imaginary. This leads to nonuniform, exponentially damped—along
r—waves. Whenever π (2m − 1) < 2γ1h, the first m terms in series (11) represent the superposition of the
waves spread from the source. The terms of the series that satisfy the inequality π (2m − 1) > 2γ2h damp
exponentially with the increase of r and the increase of number m. It follows that when the waveguide gets
thicker, the spectrum of frequencies, which are allowed to pass, gets wider.

From the above, it is obvious that the remainders of the series (11) converge to zero, since the general term
of any of these series exponentially decreases with the increase of number m. It is possible to show that these
series converge absolutely, whenever r �= 0.

4 The boundary problem

4.1 Integral representation of the solutions

Assume that f ∈ C2
(
Ḡ
)
, where G = R2\� is the physical field with line of disruption �. Let us write the

formulas for the generalized derivatives,

∂ j f = {∂ j f
}+ n j [ f ] δ�,

(
∂2

1 + ∂2
2

)
f = {(∂2

1 + ∂2
2

)
f
}+

[
∂ f

∂n

]
δ� + ∂

∂n
([ f ] δ�),

where {·} is the corresponding classical derivative, [·] is the jump of the indicated function on the contour
�, n j is the projection of the unit vector of normal to the contour � on the axis x j ; [·] δ� and ∂

∂n ([·] δ�) are
the simple and the dual layer, respectively [76].

Introducing these relations into (7), we can represent it in the form:

�2mU jm + σ∂ jθm = f jm, j = 1, 2, 3; m = 1, 2, . . . (12)

f jm = −
[
∂U jm

∂n

]
δ� − ∂

∂n

([
U jm

]
δ�
)− σ [θm] n jδ�, n3 = 0,
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Using the matrix of the F-solutions (A7), the solution of the system (12) can be represented in the form of
convolution

Um (x) = {U1m,U2m,U3m} = gm∗ fm; x = (x1, x2), fm = { f1m, f2m, f3m}.
Hence we obtain in an expanded form the integral representations of the wave field of displacements (in the
sequel, integration is conducted along the contour �, whenever nothing else is explicitly stipulated)

U jm (x) =
∫

[Ukm] (y)
∂

∂ny
g(k)jm (x − y) dSy

−
∫ ([

∂Ukm

∂n

]
+ σ [θm] nk

)
(y) g(k)jm (x − y) dSy, j = 1, 2, 3; m = 1, 2, . . . , (13)

where dSy is an element of arc of the contour � and summing is conducted on k = 1, 2, 3.
Whenever the contour � is a set of nonintersected arcs (mathematical sections) �ν (ν = 1, 2, . . . , N ) and

the stress vector is continuously extendable through all �ν, it is sufficient to leave the first term (addend) in
the right-hand side of (13), i.e., to seek the solution in the form of generalized potentials of dual layer. For the
solution of the above problem, we leave only the second term (addend) and seek for the solution in the form
of generalized potentials of single layers, which, in expanded form, read:

U1m (z) = 1

γ 2
2

∫ [
∂

∂ξ1

(
−pm

∂

∂ξ1
− qm

∂

∂ξ2
+ rmλm

)
H (r)+ pmγ

2
2 H (1)

0 (µ2mr)

]
dS,

U2m (z) = 1

γ 2
2

∫ [
∂

∂ξ2

(
−pm

∂

∂ξ1
− qm

∂

∂ξ2
+ rmλm

)
H (r)+ qmγ

2
2 H (1)

0 (µ2mr)

]
dS,

U3m (z) = 1

γ 2
2

∫ [
λm

(
−pm

∂

∂ξ1
− qm

∂

∂ξ2
+ rmλm

)
H (r)+ rmγ

2
2 H (1)

0 (µ2mr)

]
dS,

θm (z) =
∫ (

−pm
∂

∂ξ1
− qm

∂

∂ξ2
+ rmλm

)
H (1)

0 (µ1mr)
dS

1 + σ
, (14)

where pm = {pνm (ζ ), ζ ∈ �ν
}
, qm = {qνm (ζ ), ζ ∈ �ν

}
, rm = {rνm (ζ ), ζ ∈ �ν

}; ζ = ξ1+iξ2 ∈ � = ∪�ν, dS

is the element of the arc of contour �, ζ − z = reiα; H (1)
p (x) are the Hankel functions of first order of the

degree p, H (r) = H (1)
0 (µ1mr)− H (1)

0 (µ2mr).

4.2 The system of integral equations of boundary problems

At this point, we represent the boundary conditions (9) on � in a complex form:

S(m)1 − e2iψ S(m)2 = 2eiψ
(

Y (m)1 − iY (m)2

)
= 2

(
N (m) − iT (m)

)
S(m)1 − e−2iψ S̃(m)2 = 2eiψ

(
Y (m)1 + iY (m)2

)
= 2

(
N (m) + iT (m)

)
eiψ S(m)3 + e−iψ S̃(m)3 = 2Y (m)3 , (m = 1, 2, . . .)

(15)
S(m)1 = S(m)11 + S(m)22 ,

S(m)2 = S(m)22 − S(m)11 + 2iS(m)12 , S̃(m)2 = S(m)22 − S(m)11 − 2iS(m)12 ,

S(m)3 = S(m)13 − iS(m)23 , S̃(m)3 = S(m)13 + iS(m)23 ,

where ψ is the angle between the normal to the contour � and the axis Ox1, N (m) and T (m) are the Fourier
coefficients of the amplitudes of the normal and tangent stresses on �.
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Using Hooke’s law in amplitudes, we obtain the representations of the combinations introduced in (15) in
terms of the components of the displacement vector

S(m)1 = 2µ (σθm − λmU3m),

S(m)2 = −4µ
∂

∂z
(U1m − iU2m), S̃(m)2 = −4µ

∂

∂ z̄
(U1m + iU2m),

S(m)3 = µ

{
2
∂

∂z
U3m − λm (U1m − iU2m)

}
,

∂

∂z
= 1

2
(∂1 − i∂2),

S̃(m)3 = µ

{
2
∂

∂ z̄
U3m − λm (U1m + iU2m)

}
,

∂

∂ z̄
= 1

2
(∂1 + i∂2). (16)

Let us introduce the functions y jm by the equalities

pm = y1meiψ + y2me−iψ, qm = i
(
y2me−iψ − y1meiψ), rm = y3m . (17)

Substituting the limiting values of the combinations (16) into the boundary equalities (15) with the use of
the representations (14) and taking into account the formulas (17), we obtain the following system of singular
integral equations of the boundary-value problem (7), (9):

∓iy1m (ζ0)+ 1

4

∫
�

[y1m (ζ ) K11 + y2m (ζ ) K12 + y3m (ζ ) K13] dS =
(

Y (m)1 + iY (m)2

)
e−iψ0

4µ
,

∓iy2m (ζ0)+ 1

4

∫
�

[y1m (ζ ) K21 + y2m (ζ ) K22 + y3m (ζ ) K23] dS =
(

Y (m)1 − iY (m)2

)
eiψ0

4µ
, (18)

∓iy3m (ζ0)+ 1

4

∫
�

[y1m (ζ ) K31 + y2m (ζ ) K32 + y3m (ζ ) K33] dS = Y (m)3

2µ
.

Here Ki j (i, j = 1, 2, 3) are the singular kernels, extracted in Appendix C.
The sum-total index of system (18) equals to zero; therefore, it is uniquely solvable for any frequency ω,

which does not belong to the spectrum.
The system (18) can be used both for the investigation of the fluctuations of thick plates having weakened

cavities and for the investigation of wave fields in thick-walled cylinders. In the latter case, the upper sign
with the term outside the integrals corresponds to the external side of the cylinders, and the lower sign to the
internal side.

Let us now express the normal stress σθθ on the bounding surfaces �ν. Using the relations (14) and (16),
we can represent it in the form

σθθ = |Sθθ | cos (ωt −�), � = − arg Sθθ , Sθθ =
∞∑

m=1

S(m)θθ cos λm x3,

S(m)θθ = S(m)1 − N (m) = ∓ i (y1m (ζ0)+ y2m (ζ0))

1 − ν

+
∫ {(

y1m (ζ ) ei(ψ−α0) + y2m (ζ ) ei(α0−ψ)
)( µ1m

2 (1 − ν)
H0

11m − λm g1m

)

+ y3m (ζ0) λm

[
1

2 (1 − ν)
H0

01m − H0
02m − λ2

m

γ 2
2

H0

]}
dS − N (m), ζ0 ∈ �. (19)
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5 The nonstationary problem

5.1 Pulse excitation of layers

In this section, we examine the problem of the pulse excitation of layers through the lateral surface of transparent
tunnel cavities. Introducing the integral Fourier transform in time, one obtain

U j (x, ω)
1√
2π

∞∫
0

u j (x, t) eiωt dt, u j
∣∣
t=0 = ∂u j

∂t

∣∣∣∣
t=0

= 0,

u j (x, t) =
√

2

π
Re

∞∫
0

U j (x, ω) e−iωt dω; j = 1, 2, 3.

Actually, the problem now is reduced to an analysis of the boundary problem given by Eqs. (7)–(9) with respect
to the Fourier transformation of the corresponding system of integral equations (18), where the right-hand sides
represent the spectral functions acting on the surface of the cavity. The solution of the pulse problem can now
be obtained by the superposition of the “elementary” solutions on the entire spectrum of frequencies.

5.2 The Boundary-value problem for semi-infinite layers

In a Cartesian rectilinear coordinate system Ox1x2x3, we consider the semilayer −∞ < x1 < +∞, 0 < x2 <
+∞, |x3| ≤ h, weakened by a transparent tunnel cavity with a border of a cross section �. We assume that
� ∩ R1 = ∅ and on the bases of the semilayer the boundary conditions given by Eq. (1) hold.

On the border of the semilayer, two types of boundary conditions are examined:

(a) u1 = u3 = σ22 = 0, x2 = 0, (20)

(b) σ13 = σ23 = u2 = 0, x2 = 0. (21)

Here, we examine the problem of the pulse excitation of semilayers through the lateral surface of a cavity.
We use the proposed approach, described in Sect. 5.1, in combination with the method of reflections. In this
case, the matrix of F-solutions is written in the form of gm + Ag∗

m, where gm is the matrix of F-solutions for
the layer (A7) and g∗

m is the matrix corresponding to the conjugate source. The values of A = −1, A = 1
and A = 0 correspond to the semilayer with boundary conditions given by (20), (21) and the one with tunnel
cavity, respectively.

6 Numerical results

The calculations are presented in the following sequence. First, we find the approximate numerical solution of
the system of integral equations (18) by the method of mechanical quadratures, and then we derive with their
help the amplitude values of the mechanical stresses and displacements. The numerical scheme is described
in detail in Appendix C.

6.1 Harmonic excitation of layers or finite cylinders

Let there be a layer weakened by a tunnel cavity with a contour of an cross section in the form of an ellipsis
(ζ = R1 cosφ + iR2 sin φ) or square with filleted corners

(
ζ = R

(
eiφ + 0.14036e−3iφ

))
. On the surface of

the cavity—harmonically oscillating in time—normal pressure acts

N = N0 cos
πx3

2h
, N0 = const, (22)

where N is the amplitude of oscillation.
Let us now examine the layer, weakened by two tunnel cavities—circular (R = 1) and elliptical (R1 = 1,

R2 = 1.5).
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A

Fig. 1 The change of the relative magnitude α = |Sθθ /N0| at the point A on the axis Ox1 (x3 = 0), depending on the relative
wave number γ1 R for the cavity of circular (R1 = R2 = R = 1), elliptical (R1 = 1.5, R2 = 1, R = (R1 + R2)/2) and square
(R = 1) cut

Figure 1 depicts the change of the relative magnitude α = |Sθθ /N0| at the point A on the axis Ox1 (x3 = 0)
with respect to the wave number γ1 R for the cavity of “circular” (R1 = R2 = R = 1), “elliptical”
(R1 = 1.5, R2 = 1, R = (R1 + R2)/2) and “square” (R = 1) cut. For our simulations, we used the flow-
ing values of h = 1 and ν = 0.3. The Curves 1, 2 and 3 are constructed for the circle, the ellipsis and
the square, respectively. The points on the figure indicate the exact solution, which, for the circular cut, was
obtained in series.

The curves on Fig. 2 illustrate the distribution of the magnitude α along the contour of the circular open-
ing (in the median plane of layer) with a cross connection between them. d = 1 is for the Curve 1, d = 3
for the Curve 2 and d = 5 for the Curve 3. In all cases, there is a normal pressure with amplitude given
by Eq. (22) acting on the surface of the circular cavity. The remaining parameters have the same values as
above.

Figure 3 depicts the amplitude–frequency characteristics of the magnitude α for a hollow concentric cylin-
der, whose internal contour of cross section is a circle of radius R = 1, the outer contour is a square with filleted
corners, whose parametric equation has the form ζ = R2

(
eiφ + 0.14036e−3iφ

)
, 0 ≤ φ ≤ 2π, R2 = 1.5.

On the internal surface acts a normal pressure with amplitude (22). The calculation is conducted at the
point A with coordinates (1, 0, 0).

6.2 Pulse excitation of layers

Let there be an impulse-like pressure (T is the impulse length) acting on the surface of the circular cavity in
the following manner:

N = N0 cos
πx3

2h
×

⎧⎪⎨
⎪⎩

t̃, 0 ≤ t̃ ≤ 1,

1, 1 < t̃ ≤ n − 1(
n − t̃

)
, n − 1 < t̃ ≤ n.

(n ≥ 2), t̃ = n
t

T
, (23)

Figure 4 shows the results of the calculations for the evolution of circumferential normal stress σθθ in
time for different values of the half-thickness of layer h. For our simulations, we used T = 0.1, x3 = 0,
R = 10, ν = 0.3, n = 5, while the velocity of propagation of the longitudinal wave was set to c2 = 5850M/C .
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d

Fig. 2 The distribution of the magnitude α along the contour of the circular opening (in the median plane of layer) with cross
connection between them. d = 1 is for the Curve 1, d = 3 for the Curve 2 and d = 5 for the Curve 3

0 1 2 γ1R
0

20

40

α

A

Fig. 3 The amplitude–frequency characteristics of the magnitude α for a hollow concentric cylinder

We also examined the problem of a semilayer −∞ < x1 < +∞, 0 < x2 < +∞, |x3| ≤ h, weakened by
a transparent tunnel cavity ζ = Reiφ + z1.We assumed that a pulse acts on the surface of cavity (23). Figure 5
shows the change of the magnitude −µu2 at the point z0 = (0, 150) in the median plane of the layer when
z1 = (0, 200), R = 10, ν = 0.3, h = 100, c2 = 5850. Here, the solid line corresponds to the infinite layer,
the dashed line to the semilayer with the boundary conditions given as in Eq. (20) and the dotted one to the
semilayer with the boundary conditions given as in Eq. (21). Point A on the graph indicates the moment of
time when the straight wave reaches point z0. Point B is the time of arrival at the point z0 of the wave, reflected
from the border of the semilayer.
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Fig. 4 The evolution of circumferential normal stress σθθ in time for different values of the half-thickness of layer h
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Fig. 5 The change of the magnitude −µu2 at the point z0 = (0, 150) in the median plane of the layer when z1 = (0, 200),
R = 10, ν = 0.3, h = 100, c2 = 5850. The solid line corresponds to the infinite layer, the dashed one to the semilayer with the
boundary conditions (5.1) and the dotted line to the semilayer with the boundary conditions (5.2)
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7 Conclusions

In this work, we further developed the fundamental-solutions approach for layers. We used the proposed
methodology to examine several problems of harmonic and impulse oscillations. We derived the amplitude
characteristics as well as the stress diagrams for layers with one or two cavities of different types. We also
examined the spectrum of finite cylinders with thick walls. With the aid of Fourier integral transformation,
we solved problems for impulse loading on layers and semilayers with cavities. The results of this work can
be used to study the strength of constructions in the form of finite cylinders and thick layers with cavities,
problems most often met in the field of rock-mechanics.

Appendices

A The procedure for obtaining F-solutions

From system (7), taking into account Eq. (10), we obtain

�2mU1m + σ∂1θm = − P1m

µ
δ (x),

�2mU2m + σ∂2θm = − P2m

µ
δ (x),

�2mU3m − σλmθm = − P3m

µ
δ (x); m = 1, 2, . . . (A1)

Differentiating each one of the equations of system (A1) with respect to the variable x j and summing up,
we obtain the following equation with respect to θm :

�1mθm = − 1

µ (1 + σ)
(P1m∂1 + P2m∂2 + P3mλm) δ (x). (A2)

Let us now examine the case of P1 �= 0, P2 = P3 = 0 in detail.
From Eq. (A2), for the considered case, we obtain the nonhomogeneous Helmholtz equation

�1mθ
(1)
m = − P1m

µ (1 + σ)
∂1δ (x). (A3)

Let E be the fundamental solution of Helmholtz operator. Taking into account that the function δ (x) is
finite and that the convolution E∗∂1 f = f ∗∂1 E exists, we obtain from Eq. (A3)

θ(1)m = iP1m

4µ (1 + σ)
∂1 H (1)

0 (µ1mr), (A4)

where H (1)
p (x) is the Hankel function of the first order, of degree p. (A4) enables us to split the equations in

system (A1) and represent it in the form:

�2mU (1)
1m = − iσ P1m

4µ (1 + σ)
∂2

1 H (1)
0 (µ1mr)− P1m

µ
δ (x),

�2mU (1)
2m = − iσ P1m

4µ (1 + σ)
∂1∂2 H (1)

0 (µ1mr),

�2mU (1)
3m = iσ P1m

4µ (1 + σ)
λm∂1 H (1)

0 (µ1mr). (A5)
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Integration of the system (A5) in the space of generalized functions D′ (R2
)

gives

U (1)
1m = iP1m

4µ

(
− 1

γ 2
2

∂2
1 H (r)+ H (1)

0 (µ2mr)

)
,

U (1)
2m = − iP1m

4µγ 2
2

∂1∂2 H (r),

U (1)
3m = iP1m

4µγ 2
2

∂1λm H (r); H (r) = H (1)
0 (µ1mr)− H (1)

0 (µ2mr).

The cases when P2 �= 0, P1 = P3 = 0 and P3 �= 0, P1 = P2 = 0 are examined in an analogous manner. Let
us extract the final results for the displacement vector

U ( j)
nm = iPjm

4µ
g( j)

nm . (A6)

The magnitudes g( j)
nm are components of the matrix of F-solutions for every fixed value m:

gm =
∥∥∥g( j)

nm

∥∥∥ , n, j = 1, 2, 3; m = 1, 2, . . . (A7)

g(1)1m = 1

2γ 2
2

2∑
l=1

(−1)l+1 µ2
lm

(
H (1)

0 (µlmr)− H (1)
2 (µlmr) cos 2α

)
+ H (1)

0 (µ2mr),

g(1)2m = g(2)1m = − 1

2γ 2
2

2∑
l=1

(−1)l+1 µ2
lm H (1)

2 (µlmr) sin 2α,

g(1)3m = −g(3)1m = −λm

γ 2
2

2∑
l=1

(−1)l+1 µlm H (1)
1 (µlmr) cosα,

g(2)2m = 1

2γ 2
2

2∑
l=1

(−1)l+1 µ2
lm

(
H (1)

0 (µlmr)+ H (1)
2 (µlmr) cos 2α

)
+ H (1)

0 (µ2mr),

g(2)3m = −g(3)2m = −λm

γ 2
2

2∑
l=1

(−1)l+1 µlm H (1)
1 (µlmr) sin α,

g(3)3m = λ2
m

γ 2
2

H (r)+ H (1)
0 (µ2mr).

B The Kernels of integral equations

K11 =
[

1

2 (1 − ν)
µ1m H (1)

1 (µ1mr0)− λ2
m g1m +

{
g4m + 2µ2m H (1)

1 (µ2mr0)
}

e2i(α0−ψ0)

]
ei(ψ−α0),

K12 =
[

1

2 (1 − ν)
µ1m H (1)

1 (µ1mr0)− λ2
m g1m − g3me2i(α0−ψ0)

]
ei(α0−ψ),

K13 = λm

[
1

2 (1 − ν)
H (1)

0 (µ1mr0)− H (1)
0 (µ2mr0)− λ2

m

γ 2
2

H (r0)− g2me2i(α0−ψ0)

]
,

K31 = 2λm

[
g2me2i(ψ0−α0) g0m − H (1)

0 (µ2mr0)
]

ei(ψ−ψ0),

K33 = 2

[
2λ2

m g1m + µ2m H (1)
1 (µ2mr0)

]
cos (α0 − ψ0),

ζ0 ∈ � = ∪�ν, ψ0 = ψ (ζ0), ζ − ζ0 = r0eiα0 ,
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g0m = 1

γ 2
2

2∑
l=1

(−1)l+1 µ2
lm H (1)

0 (µlmr0), g jm = 1

γ 2
2

2∑
l=1

(−1)l+1 µ
j
lm H (1)

j (µlmr0), j = 1, 2, 3,

g4m = 1

γ 2
2

2∑
l=1

(−1)l+1 µ3
lm H (1)

1 (µlmr0).

The kernels K22, K21, K23, K32 are obtained from K11, K21, K13, K31 by substituting α0, ψ0, ψ for −α0,
−ψ0, −ψ , respectively.

C The numerical scheme for the solution of the system of integral equations

To solve the system of integral equations, we parametrized the contour of the opening as ζ = ζ (β), where β
is the real parameter 0 ≤ β < 2π. On the contour, two systems of points are introduced:

The points βk = π(2k−1)
N k = 1, N of interpolation,

The points β0l = 2π(l−1)
N l = 1, N of collocation.

Here, N is the number of partition points. It is noteworthy to mention that because of the specific features
of the used interpolation formula, N is odd.

The integrals were represented in the form of sums with the aid of the following quadrature formula:

∫
y (ζ ) K (ζ, ζ0) dS = 2π

N

N∑
k=1

yk K (ζk, ζ0)

√(
Reζ ′

k

)2 + (Imζ ′
k

)2
, (C1)

where ζk = ζ (βk), yk = y (ζ (βk)) = y (βk).
Extra-integral addends at collocation points are expressed in terms of magnitude yk, with the aid of the

interpolation formula [77–79]

y0l = 1

N

N∑
k=1

(−1)k+l yk

sin ((βk − β0l)/2)
(C2)

where y0l = y (ζ (β0l)) = y (β0l).
With the aid of the formulas (C1), (C2), the integral equations (18) are reduced to a system of linear

algebraic equations.
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