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INTRODUCTION 

Composites comprising calcium phosphates and natural biopolymers are widely 

used as biomaterials for bone tissue repair and engineering. Hydroxyapatites, Ca10 

(PO4)6(OH)2, has been used as a principal inorganic component of synthetic materials for 

orthopedic and stomatology for a long time. This mineral can be regarded, with some 

limitations, as a crystallochemical analog of the main mineral constituent of human and 

animal skeletal tissues. A wide range of biomaterials for different clinical applications can 

be created on the basis of two components: nanocrystalline apatite and chitosan. Chitin is 

the second (after cellulose) most abundant natural polysaccharide. It forms the skeletal 

system of arthropod; it is also present in cell walls of fungi and bacteria. The hardness of 

chitin skeletal structures of arthropod is caused by the formation of natural chitin-calcium 

carbonate-protein complexes. Chitosan is a derivative of chitin, which can be obtained by 

chitin deacetylation. Chitin and chitosan are polymorphous uncrystalline or partly 

crystalline biopolymers. Both of them contain same monomers, N-acetyl-2-amino-2-

deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose, differing in the 

proportion of acetylated and deacetylated monomers. Chitin and chitosan are promising 

materials for medical applications due to their bacteriostatic/bactericide properties, 

biocompatibility with human tissues, and ability to facilitate regenerative processes in 

wound healing. In recent years, the interest in chitosan/hydroxyapatites composite 

biomaterials increases significantly, which is expressed in a great number of scientific 

articles related to their characterization and tests. There are several ways to produce such 

composite materials. Most of them involve two major stages: first, the synthesis of an 

organic polymeric scaffold of pure or chemically treated and modified chitosan and, 

second, mineralization of the scaffold in simulated body fluid (the biomimetic way) or in 

saturated matrix solutions. The scaffolds can be made in the form of membranes, 

microspheres, or multilayered materials. Chitosan in such polymer substrates for 

mineralization can be combined with other macromolecules, such as silk fibroin or 

carboxymethylcellulose. Also chitin can be used as a scaffold. An inverse approach has 

also been described: the pre-formation of a porous hydroxyapatites scaffold with the 

consequent impregnation of it by chitosan. The composites obtained in such ways were 

characterized by different physico-chemical methods to test their potential as biomaterials, 



and also a series of biocompatibility tests using cell cultures were performed, confirming 

biocompatibility of these composites. In addition, some researchers have reported one-step 

schemes of chitosan-hydroxyapatite synthesis. Yamaguchi et al. have described a one step 

approach, in which the composite was co-precipitated by dropping chitosan solution 

containing phosphoric acid into calcium hydroxide suspension. Rusu et al. have developed 

a stepwise co-precipitation approach using it to obtain different types of 

chitosan/hydroxyapatite composites with different ratios between their components. These 

composite materials have also been thoroughly characterized by physico-chemical 

techniques and have found to contain nanosized hydroxyapatite with structural features 

close to those of biological apatite. A further development of this approach was proposed 

by Chesnutt et al., they have developed microsphere-based chitosan/nanocrystalline 

calcium phosphate composite scaffolds. It seems that a combination of physico-chemical 

and structural characterization of biomaterials with their pre-clinical in vivo investigations 

is necessary to find out how the changes in structure and composition of the investigated 

biomaterials affect their behavior in living organisms. Since chitosan/hydroxyapatite 

materials could be used in bone regeneration as scaffolds in case the application of auto- 

or allografts is impossible for some reasons, investigation of biodegradation processes in 

vivo is important for further progress in this area (as long as an ideal scaffold material is 

not yet available).  

 

AIM OF THE WORK 

In the present work we have tried to synthesize, characterize and evaluate in vivo 

behavior of the simplest (uniform, made by a one-step technique) chitosan/hydroxyapatite 

materials as a first step towards the in vivo investigation of more complicated scaffold 

systems. 

 

 

 

 

 

 

 



LITERATURE REVIEW 

Polysaccharides are the most abundant of the four major classes of biomolecules, 

which also include proteins, lipids and nucleic acids. They are often classified on the basis 

of the sequences and linkages between their main monosaccharide components, as well as 

the anomeric configuration of linkages, the ring size (furanose or pyranose), the absolute 

configuration (D‐ or L‐) and any other substituent present. Certain structural 

characteristics such as chain conformation and intermolecular associations influence the 

physicochemical properties of polysaccharides. For example, polysaccharides containing 

large numbers of hydroxyl groups are often thought of as being hydrophilic. 

Polysaccharides fill numerous roles in living organisms, such as the storage and transport 

of energy (e.g. starch and glycogen) and structural components (e.g. cellulose and chitin). 

Chitin is widely distributed in nature, mainly as the structural component of the 

exoskeletons of crustaceans (crab, shrimp, lobster, krill, squid, crawfish and prawn) and 

insect cuticles, in marine diatoms and algae, as well as in some fungal cell walls. 

Structurally, it is an insoluble linear mucopolysaccharide consisting of N‐acetyl‐D-

glucosamine (GlcNAc) repeat units, linked by ß‐ (1→4) glycosidic bonds. Technically, the 

structure of chitin is highly related to that of cellulose and may be regarded as cellulose 

where the hydroxyl [—OH] at the C‐2 position is replaced by an acetamido [—

NHCOCH3] group. 

Resources of chitin for industrial processing are crustacean shells and fungal 

mycelia; however, its commercial production is usually associated with sea food 

industries, such as shrimp canning. The processing of crustacean shells mainly involves 

the removal of proteins (“deproteinization”; in a hot basic solution, usually sodium or 

potassium hydroxide), and calcium carbonate (“demineralization”; with diluted acid), both 

present in crustacean shells in high concentrations, encasing the chitin microfibrils. 

Chitin has aroused great interest not only as an underutilized resource, but also as a 

new functional material of high potential in various fields. Several derivatives have been 

prepared from chitin, but none was as commonly studied, on both the academic and 

industrial level as chitosan. What probably constituted a milestone in the history of these 

marine polymers was the first international conference on chitin and chitosan, held in 

Boston, Massachusetts (U.S.A.) in 1977. It was organized by the Massachusetts Institute 

of Technology (MIT) Sea Grant College Program, working to promote the conservation 



and sustainable development of marine resources, and to find an alternate route of 

exploitation of these resources of high potentials in industry; an aspect which has not been 

fully explored up to that point. The conference focused on several aspects of these two 

important natural polymers, including their recovery from the various potential sources 

and their applications. 

Chitosan, discovered by Rouget in 1859, is a technologically important 

polysaccharide biopolymer. Chemically, it is a high molecular weight linear polycationic 

heteropolysaccharide consisting of two monosaccharide, N‐acetyl‐D-glucosamine and 

D‐glucosamine, linked together by β‐ (1→4) glycosidic bonds (Figure 1). The relative 

amount of the two monosaccharide in chitosan may vary, giving samples of different 

degrees of deacetylation (75‐95%), molecular weights (50‐2,000 kDa), viscosities, pKa 

values, etc. Therefore, the term chitosan does not refer to a uniquely defined compound; it 

merely refers to a family of copolymers with various fractions of acetylated units. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: Chemical structure of chitosan, and its production from chitin. 

  

Chitosan is primarily produced from chitin by exhaustive alkaline deacetylation: this 

involves boiling chitin in concentrated alkali for several hours (40–45% sodium 

hydroxide, 120°C, 1–3 hr). Since this N‐deacetylation is almost never complete, chitosan 

is considered as a partially N‐deacetylated derivative of chitin. Consequently, a sharp 

distinction between chitin and chitosan on the basis of the degree of N‐deacetylation 



cannot be drawn. Enzymatic procedures for chitin deacetylation by chitin‐modifying 

enzymes were also investigated in the literature. 

Chitosan is also found in nature, such as in cell walls of fungi of the class 

Zygomycetes, in the green algae Chlorella sp., yeast and protozoa as well as in insect 

cuticles. Recent advances in fermentation technology suggest that the cultivation of fungi 

(Aspergillus niger) can provide an alternative source of chitosan. However, chitosan from 

both sources differs slightly: whereas the acetyl groups in chitosan produced from 

crustacean chitin are uniformly distributed along the polymer chain, a chitosan of similar 

degree of deacetylation isolated from fungal cell walls would possess acetyl residues that 

are grouped into clusters. 

In contrast to most of the naturally‐occurring polysaccharides, e.g. cellulose, 

dextrin, pectin, alginic acid, agar, agarose and carragenans, which are neutral or acidic in 

nature, chitosan is an example of a highly basic polysaccharide. Its nitrogen content varies 

from 5 to 8% depending on the extent of deacetylation; it is mostly in the form of primary 

aliphatic amino groups. 

As mentioned above, the term “chitosan” describes a heterogeneous group of 

polymers. Chitosan is commercially available from a number of suppliers in various 

grades of purity, molecular weights and molecular weight distributions, chain lengths, 

degrees of deacetylation, charge densities and charge distributions, salt forms, viscosities 

and water retention values. These properties greatly affect its physicochemical 

characteristics, which in turn govern almost all of its applications. 

Although the underlying chemical and physical effects of some of the applications 

of chitosan and its derivatives are still not known in detail, considerable evidence has been 

gathered indicating that most of their physiological activities and functional properties 

depend on their molecular weight. 

The molecular weight distribution of a raw chitosan preparation is influenced by 

variable conditions employed in the deacetylation process, such as time, temperature, 

concentration and nature of starting material as well as atmospheric conditions. 

Weight‐average molecular weights of several hundreds to over one million Dalton are 

common, with a mean molecular mass of up to 1 MDa, corresponding to a chain length of 

approximately 5,000 U. Because of the influence of polymer composition and molecular 

weight range on the various physicochemical properties of chitosan, it is very important to 



adequately characterize each batch of polymer produced. The molecular weight of 

chitosan can be determined by several methods, such as light scattering 

spectrophotometry, gel permeation chromatography and viscometry. 

The main difference between chitin and chitosan lies in their solubility; 

deacetylation transforms the insoluble chitin into the acid‐soluble chitosan. Chitosan is 

therefore said to be chitin that has been N‐deacetylated to such an extent that it becomes 

soluble in dilute aqueous acids (e.g. 0.1 M acetic acid). 

Pure, native chitosan (pKa ≅6.3) is insoluble in water, in alkaline medium and even 

in organic solvents. However, water‐soluble salts of chitosan may be formed by 

neutralization with organic acids (e.g. 1‐10% aqueous acetic, formic, succinic, lactic, 

glutamic and malic acids) or inorganic acids such as hydrochloric acid. The pH‐dependent 

solubility of chitosan is attributed to its amino groups (—NH2), which become protonated 

upon dissolution at pH 6 or below to form cationic amine groups (—NH3+), increasing 

intermolecular electric repulsion and resulting in a polycationic soluble polysaccharide, 

with a large number of charged groups on a weight basis. On the other hand, chitosan 

tends to lose its charge at higher pH, and may therefore precipitate from solution due to 

deprotonation of the amine groups. 

Chitosan possesses three types of reactive functional groups: an amino group at the 

C‐2 position of each deacetylated unit, as well as primary and secondary hydroxyl‐groups 

at the C‐6 and C‐3 positions, respectively, of each repeat unit. These reactive groups are 

readily subjected to chemical derivatization under mild conditions, to allow for the 

manipulation of mechanical and physicochemical properties, for example improving 

Chitosan’s solubility at neutral pH ranges. 

Much of the commercial interest in chitosan and its derivatives during the last two 

decades arises from the fact that they combine several favorable biological characteristics, 

including biodegradability, biocompatibility and non‐toxicity;properties which render 

natural polymers superior over present‐day synthetic polymers, making them valuable 

materials for pharmaceutical, biomedical as well as industrial applications. 

Whereas chitosan solutions are highly stable over a long period 51, there is 

sometimes a need for degrading chitosan to a level suitable for a particular application, or 

as a means of conferring solubility to chitosan at neutral pH. Several methods for 

producing chitosan oligomers (“chitosanolysis”) have been described in literature, 



including radiation, chemical (acid hydrolysis or oxidative‐reductive degradation) and 

enzymatic methods, of which enzymatic degradation is preferred, since reaction and thus 

product formation could be controlled by means of pH, temperature and reaction time. 

Chitosan is susceptible to enzymatic degradation by enzymes from a variety of 

sources, including non‐specific enzymes, such as lysozymes (present in tears, saliva, blood 

and milk), chitinases, cellulases or hemicellulases, proteases (papain and pronase), lipases, 

ß‐1,3‐1,4‐glucanases, but also chitosanases. Chitosanases (chitosan 

N‐acetyl‐glucosamino‐hydrolase) 75 have been generally recognized as enzymes that 

attack chitosan but not chitin, catalyzing the endohydrolysis of ß‐ (1→4) ‐glycosidic 

linkages between D‐glucosamine (GlcNGlcN) residues in partly acetylated chitosan. 

Over the last decade, chitosanase activities with different substrate specificities have 

been reported in a variety of microorganisms, including bacteria (an estimated1‐7% of 

heterotrophic soil bacteria) and fungi as well as plants; genes encoding chitosanases have 

also been identified in some viruses. They have been found to belong to five glycoside 

hydrolase families: 5, 8, 46, 75 and 80. Interestingly, the majority of the sequenced 

chitosanases are produced by Gram positive microorganisms. The crystal structures of 

Streptomyces sp. N174 and Bacillus circulans MH‐K1 chitosanases are available. 

Fukamizo et al. proposed the classification of chitosanases into three distinct classes 

according to their substrate specificities: i) class I chitosanases split the GlcNAc‐GlcN 

linkage in chitosan, e.g. Bacillus pumilus BN262 93,193, Penicillium islandicum and 

Streptomyces sp. strain N174) class II chitosanases, where cleavage specificity is 

exclusively restricted to the GlcN‐GlcN linkage, e.g. Bacillus sp.No.7M) class III 

chitosanases, which can split both GlcN‐GlcN and GlcNGlcNAc linkages, such as 

Streptomyces griseus HUT 6037, Bacillus circulans MH‐K1, Nocardia orientalis and 

Bacillus circulans WL‐12. 

The low toxicity profile of chitosan compared with other natural polysaccharides is 

another of its many attractive features. It has been reported that the purity of chitosan 

influences its toxicological profile, yet its safety in terms of inertness and low or no 

toxicity has been demonstrated by in vivo toxicity studies. It’s oral LD50 (median lethal 

dose) in mice was found to be in excess of 16 g/day/kg bodyweight, which is higher than 

that of sucrose. Nonetheless, it is contraindicated for people with shellfish allergy. 



In their review article, Ylitalo et al. reported the absence of significant side effects 

following chitosan ingestion in human studies (for up to 12 weeks), other than mild 

constipation or diarrhea in a small percentage of the participants. However, Tanaka and 

coworkers cautioned that special care should be taken in the clinical use of chitosan over a 

long period of time. When chitosan was administered either orally or parenterally to mice, 

their body weights decreased significantly in both cases, together with disturbances in 

intestinal microbial flora and several histological abnormalities. Concerns have also been 

raised that chitosan could cause the loss of fat‐soluble vitamins, decrease mineral 

absorption and bone mineral content and block absorption of certain medicines. No 

epidemiological studies or case reports investigating the association of exposure to 

chitosan and cancer risk in humans, no carcinogenicity studies on chitosan in animals and 

no in vitro or in vivo studies evaluating chitosan for mutagenic effects were identified in 

the available literature. 

Although extensive resources were involved in both research and development of 

processes and applications for chitosan, only the last two decades have witnessed serious 

developments of a variety of technologies based on the commercial utilization of chitosan 

and its derivatives. Chitosan, its oligomers and a number of its derivatives emerged as new 

biomaterials and are currently in use or under consideration in a number of applications 

(pharmaceutical, cosmetic, medical, food, textile, agricultural, etc.). Due to the wide scope 

of applications, only a number of them will be further discussed in this section. 

Introduced to the market in the 1990's, chitosan has been the subject of much 

research regarding its potential as a useful and promising pharmaceutical excipientin 

various pharmaceutical formulations. Next to the more traditional formulations, chitosan 

has found use in novel applications such as vaccine delivery, peptide and gene delivery, in 

addition to its use in tissue engineering. So far, the nasal chitosan vaccine delivery system 

against influenza has been tested for vaccination in human subjects, and has been proven 

to be both effective and protective. Chitosan's utility as a pharmaceutical ingredient gained 

more interest when a scientific understanding of at least some of the pharmacological 

activities of this versatile carbohydrate began to evolve. 

In spite of the promising use of chitosan in the pharmaceutical industry, however 

most of the chitosan researches are directed toward medical applications. Unfortunately, a 

survey of the available literature revealed that there are only relatively few specific and 



objective research studies to support claims, ascribing a range of rather impressive 

pharmacological properties to this biopolymer. Most of these studies are very difficult to 

take seriously, with little scientific evidence to back them up. For example, chitosan is 

often being heralded, and sold, as a “revolutionary” weight loss supplement, a “fat 

magnet”, although this presumptive property is often discredited in recent studies. Given 

the large number of proclaimed medicinal benefits of chitosan, it comes as no surprise that 

the literature is filled with conflicting reports about these medical potentials. 

Some studies showed that chitosan, as an immune adjuvant, could effectively 

promote local immune response and enhance antigen presentation. Porporatto et al 

propose the following mechanisms for the modulation of mucosal immune response: i) as 

a dietary fiber, chitosan might have an impact on the intestinal flora and mucosal 

microenvironment, thus influencing local immune function; ii) as a delivery agent, it might 

decrease the clearance rate and stimulate the uptake of antigens; and iii) as an adjuvant, it 

might provide “danger signals”, being a component of fungal cell walls, possibly through 

the activation of components of the innate immune system such as macrophages. They 

therefore conclude that chitosan could be used to modulate the immune response to 

orally‐administered antigens. 

Probably one of the most prominent commercial applications of chitosan is its use as 

a hemostatic. Several chitosan‐based wound dressings are available on the market for 

clinical use, including HemCon® Bandage and ChitoFlex wound dressings(HemCon 

Medical Technologies Inc., West Yorkshire, UK), as well as CELOX™(Medtrade 

Products Ltd., Crewe, England); both claimed to be FDA approved. 

Chitosan is implicated as a component of host‐fungal interactions. It acts as a potent 

elicitor of plant defense responses, activating the expression of plant defensive genes and 

inducing the production of pathogen‐related proteins, such as chitinases and other 

hydrolytic enzymes. These enzymes can hydrolyze chitin and chitosan in fungal cell walls, 

consequently leading to growth inhibition and/or death. The induction of chitosanases and 

chitinases through genetic engineering has also been proposed. In addition, chitosan 

oligomers exhibit fungicidal properties, which make chitosan very promising as a 

biocontrol measure against plant pathogens. In fact, chitosan‐based plant growth 

stimulators found their way into the market (e.g. ChitoPlant® and SilioPlant®; ChiPro 



GmbH, Germany). They presumably stimulate the plant immune response against 

pathogens and have a growth‐promoting activity. 

Since a large amount of the crustacean exoskeleton is readily available as a 

byproduct of the seafood processing industry, the raw material for chitosan production is 

relatively inexpensive, and thereby the production of chitosan on a large scale from this 

renewable bio‐resource is economically feasible. Chitosan is commercially produced in 

different parts of the world (Japan, North America, Poland, Italy, Russia, Norway and 

India) on a large scale. It has been estimated that up to109– 1010 tons of chitosan are 

annually produced in nature. Another important aspect to be considered is that utilizing the 

shellfish waste for chitin production provides a solution for the waste disposal problem, 

and provides an alternative for the use of this oceanic resource. 

Generally Recognized as Safe (GRAS) is a designation of the FDA (Food and Drug 

Administration) in the United States of America, that a chemical or substance added to 

foods and beverages is considered safe by experts. Chitosan has not been officially 

proclaimed GRAS by the FDA but one Norwegian company (Primex Ingredients ASA), 

which manufactures shrimp‐derived chitosan, has announced in 2001 that its purified 

chitosan product (ChitoClear®) has achieved a GRAS self affirmed status in the U.S. 

market. On the other hand, the FDA has approved chitosan for medical uses such as 

bandages and drug encapsulation. Chitosan is also widely used in foods in Italy, Finland, 

Korea and Japan. 

The structure and composition of bone varies with the tissue site and its origin (e.g. 

lamellar versus cortical, intramembranous versus endochondral) as well as with age, diet, 

and health status. Engineering bone requires mimicking of key aspects of bone structure 

and composition to achieve the optimal functional tissue. To appreciate these 

characteristics, this chapter will review current knowledge of the functions of the mineral 

and matrix constituents, and how these functions have been assessed by studies of age and 

disease variations in tissue composition. Some comment will also be made on the current 

state of bone tissue engineering from the mineral and matrix points of view.  

Tissue-engineered bone and other mineralized tissues will be important for the 

repair of lesions caused by cancer surgery, birth defects, and trauma. Since bone is unique 

in terms of being able to repair itself1 (e.g., fracture healing in humans and animals, limb 

regeneration in lower species), lessons can not only be learned by examination of these 



processes, but there may be instances when tissue engineered products may only be used 

to enhance the natural repair process. 

Bone is a composite material consisting of mineral, matrix, cells, and water. 

Developmentally as the cartilaginous anlage of the bone shaft is replaced by a boney 

matrix, that matrix is predominantly matrix (osteoid) and calcified cartilage. With age the 

mineral content increases, reaching a maximum value, approximated by “peak bone 

density,” in male and female humans at different ages. In general, as the animal matures 

even further the total bone mineral content decreases. Diseases such as osteoporosis are 

associated with a decrease in total bone density, but not necessarily with decreases in the 

proportion of mineral in any bone, while osteomalacia is defined as a loss of bone mineral 

and an increase in osteoid. Conversely, osteopetrosis is an increase in both bone mineral 

and bone matrix, beyond that necessary for normal function.6 like many other composite 

materials, the integration of minerals within the organic matrix enables bone to have 

mechanical properties that are enhanced relative to the properties of the mineral (abrittle 

material) or the matrix (an elastic material) alone. 

Bone has both mechanical and homeostatic functions, providing protection for the 

internal organs of the body and serving as a storage site and source of mineral ions. In 

terms of evolution, the vertebrates developed calcium phosphate skeletons, but there are 

lower species with other mineralized exo- and endo-skeletons that contain calcium 

carbonates and other phases. The compositions of those species’ skeletons are reviewed 

elsewhere, along with discussions of how the study of these species can contribute to the 

development of tissue-engineered products. Bone strength is determined by the shape of 

the bone, the structure (arrangement of its components), that is, its geometry, and by its so-

called “material” properties. The stress–strain curve of the bone has areas that have been 

shown to be determined predominantly by the mineral phase (elastic region) and 

principally by the organic phase (plastic region). The slope of the stress–strain curve is the 

elastic (Young’s) modulus, which describes the intrinsic stiffness of the bone. Hence, all 

other components being equal, a more highly mineralized material will have a greater 

elastic modulus. The area under the stress–strain curve is the amount of energy needed to 

cause a fracture; thus, bones with comparable Young’s module that have stress–strain 

curves extended into the plastic region will be more resistant to load than those that do not. 

There is a well-established correlation between bone mineral density (BMD) measured 



radiographically and bone strength, but BMD does not completely account for bone 

strength.15 Rather, it is other properties of the composite tissue that are believed to explain 

this variation. 

In the United States, there are over 500,000 bone grafts per year to replace or repair 

diseased or damaged bone. Autologous bone graft has long been considered the clinical 

“gold standard.” Harvest of autograft, however, can lead to complications including 

chronic harvest site pain, infection, nerve damage, cosmetic deformity, and hemorrhage. In 

addition, autograft harvest increases operative time and cost. Allograft (e.g., cadaver 

bone), has been proposed as an effective alternative; yet, this material is also plagued by 

problems including immunogenicity, viral transmission, compromised physiologic and 

biomechanical properties, and potentially limited supply. Metal implants are frequently 

used for these purposes, but they cannot perform as efficiently as a healthy bone, and 

metallic structures cannot remodel with time. To help address the need for better bone 

substitutes, bone tissue engineers seek to create synthetic, three-dimensional bone 

scaffolds made from polymeric materials incorporating cells or growth factors to induce 

the growth of normal bone tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III 

MATERIALS AND METHODS 

3.1 Materials preparation and characterization 

The examined series consists of materials with different chitosan/apatite 

concentration ratios. The low molecular weight chitosan from Sigma-Aldrich (degree of 

deacetylation 75-85%; Brookfield viscosity 20-200 cP) was used. The substances were 

obtained by adding aqueous solutions of CaCl2 and NaH2PO4 (keeping Ca/P ratio equal 

to 1.67) into 0.2% solution of chitosan in 1% acetic acid. The necessary pH level was 

maintained by adding NaOH. The details of the sample preparation are listed in the Table 

1. Products of the synthesis were aged, rinsed thoroughly, and then dried. Water content 

and chitosan-to-apatite ratio were estimated by weighing the samples before and after 

annealing in air at the temperature of 130 C and 900 C for 45 minutes.  

To obtain porous materials, a lyophilization procedure was applied to wet (not dried 

completely) substances by using the vacuum chamber VUP-5M (SELMI, Ukraine) in 

which a glass sample-holder cooled with liquid nitrogen had been mounted. The frozen 

samples were dried under 10-3 Pa overnight. 

Infrared spectra were measured on the Spectrum One spectrometer (Perkin Elmer). 

Before examination the powdered samples were mixed with KBr powder (2.5-3.0 mg of 

chitosan/apatite composite and 300 mg of KBr) and pressed into a solid disk. The Vickers 

hardness of the non-porous samples was measured by the standard method using the 

special light microscope PMT-3 (LOMO, Russia). The load of 20 grams was applied to 

each sample. 

X-ray diffraction (XRD) crystallographic investigations were performed using the 

diffractometer DRON4-07 (“Burevestnik”, Russia). The Ni-filtered CuK radiation 

(wavelength 0.154 nm) was used with a conventional Bragg-Brentano geometry. The 

current and the voltage of the X-ray tube were 20 mA and 30 kV respectively. The 

samples were measured in the continuous registration mode (at the speed of 2 /min) within 

the 2-angle range from 8 to 60. All experimental data processing procedures were 

performed with the program package DIFWIN-1, (“Etalon PTC” Ltd.). 

Scanning electron microscopy with X-ray microanalysis was performed using the 

electron microscope REMMA102 (SELMI, Ukraine). This instrument allows visualization 

of sample surface with the limit resolution of ca. 10 nm. Characteristic X-ray emission 



exited by the electron probe makes it possible to estimate the elemental composition of a 

sample. In this work the accelerating voltage of the electron probe was set to 20 kV, the 

current of the probe was set to 2 nA. An energy dispersive X-ray EDX) detector was used. 

The analytical signal of characteristic X-ray emission was integrated by scanning the 

50X50 μm2 area of sample surface.  

To avoid surface charge accumulation in the electron-probe experiment, samples 

were covered with the thin (30-50 nm) layer of silver in the vacuum set-up VUP-5M 

(SELMI, Ukraine). 

3.2 Animal tests 

For the in vivo tests 48 linear laboratory rats at the age of 4 months were used. The 

Ukrainian National Act of animal protection against cruel treatment (Act № 3447-IV 

21.02.2006) regulating the care and use of laboratory animals has been observed. At the 

middle one-third of right tibia of the animals perforated defects were made with a 

stomatological borer, diameter 2 mm, in the sterile operating room. 

The width of a tibial diaphysis of adult rats is at the average form 4.2 to 4.7 mm. 

When a perforating bone defect is modeled, it is necessary to preserve integrity of bone, 

which causes the intramembranous type of bone regeneration. A model defect in this case 

cannot be wider than 2 mm. The 50/50 chitosan hydroxyapatites scaffolds were chosen for 

in vivo evaluation. In the experimental group of animals cylindrical ChAp rods were 

implanted into traumas, diameter of the rods was equal to the width of the wound channel. 

The control group was comprised of the rats with the analogous tibial defects, which were 

not filled with the investigated material. The animals were taken out of the experiment 

after 5, 10, 15, and 24 days after implantation. The terms of taking out corresponded to the 

main stages of reparative osteogenesis. The extracted bones with the defects were fixed in 

10% formalin and then embedded in paraffin to prepare histological specimens. Some 

bones were treated with glutaraldehyde for the electron microscopy. The histological and 

histomorphological analyses of the extracted tissues were performed at the above 

mentioned stages of reparative bone regeneration. 

3.3 Characterization of specimens after the in vivo tests 

Elemental composition and morphologic characteristics of the tissues were studied by 

scanning electron microscopy with the X-ray microanalysis. At the same time the blood 

samples were taken from the caudal vein for the biochemical analysis. The levels of 



calcium in serum, alkaline phosphatase and crude protein were examined. The crude 

protein in blood plasma was estimated by Lowry method. The calcium content in blood 

plasma was examined using the murexide-glycerin reagent. The alkaline phosphatase 

activity was determined by decomposition of phenyl phosphate with the formation of 

phenol and consequent reaction of the phenol with 4-aminophenazone.  

To prepare histological specimens the places of defects were extracted, fixed in 10% 

solution of neutral formalin, decalcified in EDTA solution during two months, dehydrated 

in alcohol solutions with increasing alcohol concentrations, and finally embedded in 

paraffin. Histological microscopic sections10-12 μm thick were prepared and stained with 

azure-eosin and by van Giezon. The microscopic sections were then investigated using an 

“Olimpus” light microscope with a digital camera. 

Morphometry study has been carried out using the specialized computer programs 

“VideoTest 5.0”and “VideoSize 5.0” (St. Petersburg, Russia). 3 days after the defects were 

made, the cellular composition of regenerated tissue was investigated, i.e. the percentage 

of certain cell populations compared with the total amount of cells in the place of a defect. 

The number of fibroblasts, macrophages, lymphocytes, plasmocytes, neutrophils, and 

undifferentiated cells was calculated. Cells in the samples were counted under 1000x 

magnification, which allows to determine the phenotypic peculiarities of different cellular 

populations. Poorly differentiated bone marrow cells and undifferentiated connective 

tissue cellular elements were defined as undifferentiated cells. The cells had been counted 

over the whole section of a model defect. The number of macrophages, lymphocytes, 

fibroblasts, plasmocytes, and undifferentiated cells is given as percentage to the total 

number of cells in the defect. In histological specimens of the next stages of reparative 

osteogenesis the percentage of granulation, fibroreticular, and membranes reticulated 

splenial bone tissues as well as of red bone marrow were determined. 

 

 

 

 

 

 

 



CHAPTER IV 

RESULTS AND DISCUSSION 

The preparation conditions for series of ChAp composites and their chitosan-to-

apatite ratio estimated by simple thermogravimetric analysis are listed in the Table 1. The 

water content was estimated from the weight loss after heating the samples at 130ºC. The 

total mineral (calcium phosphate) content was measured as a sample weight after complete 

burnout of organic moiety at 900ºC. Here we assumed that the weight loss at 130 °C 

corresponds to the water fraction and the weight loss at 900°C corresponds to the 

polysaccharide fraction. As it is seen, the experimental data are in reasonable agreement 

with the declared chitosan-to-apatite ratio. 

Table 1  
Chitosan-to-apatite ratio of samples estimated from thermogravimetric measurements. In 

each case 1000 ml of0.2 wt% chitosan solution was used for Ch/Ap preparation. 

 

 

 

 

 

 

 

 

From IR spectroscopy studies of ChAp series with different proportions between 

components we can conclude that the major absorbance bands of IR spectra correspond to 

hydroxyapatites, though their width increases significantly and the bands characteristic to 

chitosan appear as the chitosan content increases (Fig. 1). The bands at 1000-1100 cm-1 

and 500-600 cm-1 correspond to different modes of PO4 group in hydroxyapatites. 

Broadening of the band at 1050 cm-1 reflects the presence of polymer and its interaction 

with phosphate groups. The bands at 1420-1485 cm-1 and at ~875 cm-1 are derived from 

carbonate ions in apatite. The phosphate stretching vibration bands from hydroxyapatite 

were indicated at 1000-1100 cm-1 whereas the phosphate bending vibration bands situated 

at 500-600 cm-1. The strongest characteristic CO3 bands at 1420-1485 cm-1 are also 

visible. The bands at 1550-1700 cm-1 can be attributed to superposition of hydroxyapatite 

OH group and chitosan amide I and amide II. The bands at 3600-3700 cm-1 can be 



assigned to hydroxyl groups present in the structure of chitosan, the bands at 2800-2950 

cm-1 belong most probably to C-H stretch. 

Fig. 1 
IR spectra of hydroxyapatites and chitosan/hydroxyapatites scaffolds with different 

chitosan/hydroxyapatites ratio. 

 

 

 

 

 

 

 

 

 

 

 

XRD patterns suggest the presence of nanocrystalline apatite, its crystallinity decreases as 

content of chitosan increases (Fig. 2).  

Fig. 2  

X-ray diffraction patterns of ChAp samples with different initial component ratio 

 

 

 

 

 

 

 

 

 

 

As it follows from the diffraction peak broadening, which is inversely proportional 

to the crystallite size, the more chitosan is present in the composite, the less is the average 

size of apatite crystals. The semi quantative evaluation of the crystallite size were 



performed by the analysis of (002) line profile in the same way as in the work. Shortly, at 

the negligible lattice microstrain, the crystallite size was determined from the physical 

broadening of the (002) line from Scherrer’s formula: 

 

 

 

 

Where β is the line breadth of the pure diffraction profile resulting from small crystallite 

size, and K is a constant approximately equal to unity and related to crystallite shape. 

Powdered polycrystalline NaCl was used as reference material free of size and microstrain 

broadening. The result of estimation suggests that for chitosan/apatite ratio equal to 50/50, 

the size of apatite crystallites in the composite is ~20 nm, which is comparable with the 

crystallite size of bioapatite in bone tissue. The average size of bone apatite is normally 

~20 nm, which was proved by different experimental techniques. 

Slightly increased intensity of the (002) and (004) peaks compared with the 

reference data suggests that the apatite crystallites are elongated along the crystallographic 

axis с (what is also characteristic for bioapatite of bone tissue). The XRD analysis in 

combination with IR spectroscopy studies clearly indicated the formation of 

chitosan/hydroxyapatites composites. 

The Vickers hardness of non-porous ChAp composites is shown in the Table 2. 

These data indicate the decrease of material strength with the increase of chitosan 

percentage and are in reasonable agreement with the value of 0.396 GPa recently reported 

for the cortical bone.  

Table 2  

The Vickers hardness of the samples with different chitosan-to-apatite ratio. 

 

 

 

 

 

 

 



The porous composite materials are much less hard than the solid ones; their 

measured hardness values were too much spread to be conclusive; it was difficult to 

measure the dent size because of the complicated profile of sample surface. 

Ca/P ratio in the ChAp samples measured by scanning electron microscopy with 

EDX microanalysis was close to that of apatite (1.67). The EDX spectra of the ChAp 

samples did not show any pronounced peaks of Na and Cl (Fig. 3), which suggested that 

the synthesized apatite did not have substitutions in the cation (Na → Ca) and anion (Cl → 

OH) sublattices at the level detectable by the technique. In lyophilized materials a network 

of micrometer and submicrometer pores has been observed. The porous materials were 

produced by lyophilization of the samples immediately after rinsing and ageing. In the 

microscopic images of these materials two systems of pores can be visually distinguished 

(Fig. 4). Statistical treatment using the specialized computer programs “VideoTest 5.0” 

and “VideoSize 5.0” (St. Petersburg, Russia) has shown that the “small” pores have the 

average diameter of 30 μm, the “big” ones of 50 μm. Such pores could promote the bone 

tissue ingrowths into implanted material. 

 

 

 

 

 

 

 

 

Fig. 3 EDX spectrum of ChAp 50/50 composite. Fig. 4 Microstructure of porous ChAp. 

 

The content of Ca and P (measured by EDX microanalysis) in bones of the model 

animals after implantation of solid ChAp biomaterial with the 50/50 component ratio is 

shown in the Fig. 5. In this case it is clearly seen that in the presence of implanted ChAp, 

the Ca and P concentrations in bone tissue near the defect were restored much faster than 

in the control group (where the bone defects were not filled with implants). 

 

 



 

 

 

 

 

 

 

 

 

Fig. 5 The content of Са and Р in bone tissue near the site of implantation (squares) 

and at the distance of 15 mm (circles) vs. implantation time. Non-filled symbols 

correspond to the control experiment: the defect without an implant. 

 

The biochemical blood values for the experimental and control groups of animals 

are given in the Table 3. The protein and alkaline phosphatase level in the blood of 

experimental animals do not differ from that of the control group. The comparison of the 

values with the results of microanalysis of bones with implanted ChAp indicates that 

calcium mobilization from the surface of intact tissues decreases while its content in blood 

plasma comes to normal. Low Ca mobilization from neighboring bones can decrease the 

bone strength loss accompanying the regenerative processes. As it is proved in numerous 

works, the bone strength depends strongly on the mineral content, i.e. Ca and P 

concentration. 

Table 3  

Biochemical blood values of the experimental and control groups of animals. 

 

These data suggest that nano-sized apatite crystals incorporated into chitosan matrix, 

being implanted in vivo, participate immediately in reparative biochemical processes of 

living bone tissue. Apparently, these are Ca and P from the apatite crystals of implanted 



material that are used for the regenerated bone formation. This decreases mobilization of 

these elements from the bone tissue near a defect. 

The porous materials have shown osteoconductive properties in the in vivo tests. In 

3 days after implantation, pores of ChAp were filled with the cells of leukocyte-

macrophage and fibroblastic differons, which was the evidence of progress in 

osteoreparative process. Further, the formation of fibro reticular and membrane reticulated 

primary bone tissue trabecules occurred with their subsequent calcification and remodeling 

into lamellar bone tissue. Starting from the 10th day, the integration of ChAp into newly 

formed tissue was observed, and by the 24th day the replacement of the implant by the 

young bone took place. The above-described dynamics is specific only for porous samples 

of ChAp. Solid (nonporous) implants did not improve histological pattern of the reparative 

process. 

The osteoconductive properties of a ChAp composite material can be observed after 

implantation of it into the bone defect at the first stages of regenerated bone tissue 

development. In the Fig. 6 there are clearly visible pores filled with the typical for such 

regeneration stages cell and tissue species.  

 

 

 

 

 

 

 

 

Fig. 6 Area of the tibial defect, 5 days after traumatization: 

1. ChAp. 

2. Pore with posttraumatic hematoma cells. 

3. Granulation tissue. 

4. Capillary. 

Young granulation tissue (GT) dominates in the regenerate, its content is 

25.25±5.14%. We did not however observe the close connection of tissue components 

with the material of the implant, which can be explained by the early stage of observations 

and high rate of granulation tissue formation. GT occupies the peripheral segments of the 

defect (which is similar to the patterns of the control animals). The central pores of the 

implant are filled mostly with the cells of posttraumatic hematoma. The normal cell 



composition plays an important role in new bone formation. At the initial stage of 

regeneration the neutrophils secrete cytokines regulating proliferation, cell differentiation, 

and phagocytosis. The lymphocytes and plasmocytes are able to regulate angiogenesis and 

fibroblast migration. Also they have stimulating influence on macrophages. The 

macrophages in their turn act as regulators of inflammatory processes; they have 

chemotactic action on fibroblasts and provide intercellular cooperation in the focus of 

trauma. Fibroblasts are the cells which actively produce collagen beginning from the first 

days after trauma providing the formation of a soft natural scaffold. So, proliferation and 

differentiation of cells at the first stage of the reparative regeneration is crucial for the 

formation of the critical mass of cells, which is important for the formation of tissue 

structures in trauma site at the following stages of regeneration. In one field of view 

different cell phenotypes were observed: young secreting cells, mature macrophages filled 

with detritus, dying cells. The cell percentage for the experimental and control groups of 

animals are given in the Table 4. In the inner pores the edges of the material were blurred 

which could be indicative of the beginning of ChAp osteointegration and high activity of 

cells in this site of the defect. Both in the peripheral and in the central pores vascular 

invasion was observed, mostly of the sinusoidal type. The vessels were surrounded by a 

layer of perivascular cells and secreting fibroblasts, which were more numerous in 

peripheral sections. 

In 10 days after introduction of the implant its intense biodegradation takes place 

with the formation of tissue-specific structures of regenerate. The intense growth of 

fibroreticular tissue (FT) with more ordered fiber arrangement can be observed in the area 

of the defect, and also formation of bone trabeculae of membrane reticulated bone begins 

(Fig. 7). FT is situated mostly along the periphery of the defect, while its central areas are 

filled with remains of granulation tissue with the great number of fibroblasts, macrophages 

and sinusoidal capillaries. For the first time the formation of membrane reticulated bone 

tissue is observed which can be the evidence of the osteoblastic type of reparative 

processes. The amount of new bone tissue is approximately the same as in the case of the 

control animals (34.58±9.27%), so the implant cannot be regarded as osteoconductive. At 

the same time, the integration and close interconnection of the forming bone trabeculae 

and ChAp can be observed. 

  



 

 

 

 

 

 

 

 

Fig. 7 Area of the tibial defect, 10 days after traumatization: 

1. ChAp. 

2. Granulation tissue. 

3. Fibroreticular tissue. 

4. Bone trabeculae. 

 

The histological pattern of the regenerate on the 15th day is similar to that of the 

10th day (Fig. 8).Both fibroreticular and bone tissues were present; the bone tissue had 

formed a denser network of trabeculae than in the previous observation time. Granulation 

tissue was completely absent. The active remodeling of membrane reticulated bone into 

splenial bone and its mineralization takes place, which is indicated by the increase of 

staining intensity of the bone trabeculae. 

.  

 

 

 

 

 

 

 

Fig. 8 Area of the tibial defect, 15 days after traumatization: 

 

1. ChAp. 

2. Fibroreticular tissue. 

3. Bone trabeculae. 

4. “Parent” bone. 

 



The percentage of FT, membrane reticulated bone and splenial bone is 

correspondingly 28.43±7.97%, 40.21±9.65% and 10.87±3.22%, which is in agreement 

with the control series of animals. The remains of the implant are situated mainly in the 

centre of the defect, connected closely with the forming bone trabeculae and stained non 

uniformly, which suggests their integration into the newly formed bone matrix. 

On the 24th day of observation bone tissue occupies most of the area of the defect 

(Fig. 9). The deeper parts of the regenerate are formed with membrane reticulated bone 

tissue with stainability close to that of the “parent” bone. The number of osteoblasts on the 

surface of trabeculae decreases, which indicates that intense bone matrix formation 

processes stops, and remodeling processes begin.  

 

 

 

 

 

 

 

 

Fig. 9 Area of the tibial defect, 24 days after traumatization: 

1. ChAp 

2. Fibroreticular tissue. 

3. Membrane reticulated bone tissue. 

4. Splenial bone tissue. 

5. Osteon. 

6. “Parent” bone. 

The remains of not degraded ChAp are pushed off to the periphery and are on the 

boundary of the “parent” bone. The tight bonding of the implant with newly formed bone 

matrix is observed; the bonding with the “parent” bone is less tight. The cortical plate in 

the place of the defect is formed mostly by the splenial bone in which intensive 

remodeling processes are observed, this is indicated by the presence of both secondary and 

primary osteons. The primary ones at this observation stage are much more numerous. So 

it is safe to say that the completion of the primary formation of neogenic bone and the 

beginning of remodeling processes. The implant’s remains are closely integrated into the 

newly formed matrix and are subject to biodegradation in the course of bone remodeling. 



CONCLUSIONS 

1. A series of chitosan/hydroxyapatites composite materials has been synthesized in 

aqueous medium from chitosan solution and soluble precursor salts by a one step co-

precipitation method.  

2. XRD patterns of the materials suggest the presence of nanocrystalline apatite with the 

average crystallite size of approximately 20 nm. The similar size of crystallites is 

characteristic for natural bone bioapatite.  

3. The results of IR spectroscopy studies suggest the presence of carbonate ions in the 

synthesized materials. Thus, this relatively simple synthesis procedure allows to obtain 

composite materials with nanocrystalline carbonate-substituted hydroxyapatites similar to 

natural bone bioapatite.  

4. Histomorphological studies have shown that the porous chitosan/hydroxyapatites 

materials undergo almost complete biodegradation. The complete replacement of porous 

chitosan/hydroxyapatites composite implant by newly formed bone tissue within bone 

defects in rats takes place on the 24th day of implantation.  

5. The results of the present study suggest the high potential of simple 

chitosan/hydroxyapatites composite scaffolds produced by the one-step co-precipitation 

method as a filling material for orthopedic and stomatology. 
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