СНИЖЕНИЕ ПОТЕРЬ МОЩНОСТИ НА ТРЕНИЕ В РОТАЦИОННЫХ ПЛАСТИНЧАТЫХ МАШИНАХ

Васюхно Д.В., студент, Вертепов Ю.М., доцент, СумГУ, г. Сумы

Ротационные пластинчатые машины (ПРМ) нашли широкое применение в компрессорной, вакуумной и холодильной технике при работе в области малых и средних производительностей (до $50 M^3 / MuH$) благодаря таким преимуществам, как простота конструкции, уравновешенность, низкая стоимость изготовления, надёжность в эксплуатации, отсутствие клапанов. К недостаткам этих машин относятся: ограниченный срок службы пластин; значительные потери мощности на трение пластин в пазах ротора и о внутреннюю поверхность цилиндра; ограничение быстроходности допустимой величиной скорости скольжения пластин; небольшие перепады давлений нагнетания и всасывания, ограниченные прочностью пластин.

Потери мощности на трение в ПРМ равны

$$N_{mp} = N_1 + N_2 + N_3 + N_4,$$

где N_1 - мощность на трение пластин в пазах ротора;

 N_2 - мощность на трение пластин о цилиндр;

 N_3 - мощность на трение в подшипниках;

 N_4 - мощность на трение в уплотнении вала;

Две последних составляющих потерь мощности малы по сравнению с двумя первыми составляющими, поэтому данная работа рассматривает возможности снижения величин N_1 и N_2 за счет выполнения пластин с наклоном на угол ψ в направлении вращении ротора и за счет применения разгрузочных колец, на которые опираются пластины вместо внутренней поверхности цилиндра.

Величины N_1 и N_2 приняты состоящими из мощности трения от сил инерции и мощности трения от разности давлений Δp в соседних рабочих ячейках. Выражение для величин N_1 и N_2 были получены, исходя из кинематики движения пластин РПМ, в зависимости от угла поворота φ .

Принималось, что угол наклона пластин ψ изменялся в пределах от $\psi=0$ (когда пластины выполнены радиально) до $\psi=30^\circ$. Было получено, что потери мощности на трение $N_{mp}=N_1+N_2$ с возрастанием угла ψ уменьшаются (таблица 1).

Таблица 1 – Потери на трение в зависимости от угла наклона пластин

ψ,°	0	5	10	15	20	30
$N_{1\psi}$, KBm	209,9	255,8	255,2	256,6	260,1	273,3
$N_{\Pi\psi}$, KBm	39,9	84,5	79,9	74,8	69,2	57,2
$N_{\Pi\Delta p\psi}$, KBm	170	171,3	175,3	181,8	190,8	216,1
$N_{2\psi}$, KBm	2789,5	2753	2680,3	2583	2484	2084,1
$N_{I\!I\psi},K\!Bm$	2562,3	2523,4	2446,8	2344,5	2189,3	1817
$N_{\mathcal{U}\Delta p\psi},KBm$	227,2	229,5	233,4	238,5	245,7	267,1
N_{mp} , KBm	2999,4	3008,8	2935,5	2839,6	2694,9	2357,4

С увеличением угла наклона пластин ψ потери мощности на трение в ПРМ снижаются по сравнению с радиальными пластинами.

Если в ПРМ пластины опираются на разгрузочные кольца, то у формуле для потерь мощности на трение в ПРМ вместо мощности N_2 будет мощность $N_2{}'$ на трение в разгрузочных кольцах, которая не зависит от угла поворота ротора φ . Потери мощности на трение равны $N_{mp}=N_1+N_2{}'$ и в зависимости от угла наклона пластин ψ представлены в таблице 2.

Таблица 2 – Потери на трение с разгрузочными кольцами

$\psi,^{\circ}$	0	5	10	15	20	30
$N_{1\psi}$, KBm	209,9	255,8	255,2	256,6	260,1	273,3
N_2', KBm	14,24	14,24	14,24	14,24	14,24	14,24

N_{mp}', KBm 224,2 270 209,4 270	0,8 274,3 287,6
------------------------------------	-----------------

Пластины с углом наклона $\psi = 10^{\circ}$ самые эффективные по сравнению с другими рассмотренными в работе углами наклона.

Расчеты мощности выполнялись для ПРМ производительностью $V_{\delta} = 19, 2 M^3 / MUH$

В результате выполненного расчетного сравнения было получено, что наиболее эффективным способом снижения потерь мощности на трения в ПРМ является применение разгрузочных колец при всех рассмотренных углах наклона пластин.

Расчеты выполнялись по программе, разработанной авторами.