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Dipolar interaction effects on the thermally activated magnetic relaxation
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The thermally activated magnetic relaxation in two-dimensional lattices of dipolar interacting
nanoparticles with large uniaxial perpendicular anisotropy is studied by a numerical method and
within the mean-field approximation for comparison. The role that the correlation effects play in
magnetic relaxation and the influence of lattice structure and bias magnetic field on the relaxation
process are revealed. The correlations of the nanoparticle magnetic moments enhance relaxation on
small times, delay it on large times, and reduce the steady-state absolute magnetization at nonzero
bias fields. In a hexagonal lattice, magnetic relaxation on small times occurs faster and the
steady-state absolute magnetization has the larger magnitude than in a square lattice with the same
lattice spacing. ©2004 American Institute of Physic§DOI: 10.1063/1.1759782

The two-dimensiona(2D) ensembles of uniaxial ferro- zero bias magnetic fields, and we present results obtained
magnetic nanoparticles, whose easy axes of magnetizatiomithin its framework, which clarify the role that the correla-
are perpendicular to the nanoparticles’ plane, represent dion effects, bias field, and lattice structure play in the mag-
important class of perpendicular magnetic recording média.netic relaxation. We consider the 2D ensembles of spherical
From a technological point of view, the main characteristicnanoparticles with a radius, which occupy the sites of a
of these media is the average time of data storage, which square or hexagonal lattice with lattice spacihgand whose
one of the numerical parameters that describe the thermallgasy axes of magnetization are perpendicular to the lattice
activated magnetic relaxation. Due to the dipolar interactiorplane §ky plane. We also assume thaia) the nanoparticle
between nanopatrticles, its analytical description in such enmagnetic momentsn;(t) (the indexi labels the nanopar-
sembles is a very complicated problem, which was solvedicles) perform a coherent rotatiorjrf;(t)|=m), (b) a bias
only within the mean-field® and fluctuating theories of magnetic fieldHk (k is the unit vector along the axis) acts
magnetic relaxation. The former deals with the mean comen eachm;(t), and(c) the initial conditionm;(0)=mk holds
ponent of the dipolar field acting on the nanoparticles, andor all i.
the latter accounts of both the mean and fluctuation compo- If the potential barriers between the equilibrium direc-
nents. However, the correlations of the nanoparticle magnetitons of all m;(t) are much larger than the thermal energy
moments, arising from the dipolar interaction, also play arkgT (kg is the Boltzmann constant; is the absolute tem-
important role, especially on the final phase of magnetic reperature, then the vectorsn;(t) fluctuate within small vi-
laxation. To study the features of magnetic relaxation in suclkinities of thek and —k directions, and they are reoriented
ensembles, which are conditioned by the correlation effectgyccasionally. In this case the average numbergt) and
we have developed a method for its numerical simulation aN_(t) of positively and negatively oriented magnetic mo-
zero bias field. Usually, magnetic relaxation in ensembles of ments in a lattice region that contaih&>1) nanoparticles
dipolar interacting nanoparticles is simulated either by theare well defined ., (t) +N_(t)~N), and we can introduce
conventional Monte Carlo methdd,where the role of time the reduced magnetization of the nanoparticle ensemble as
plays the Monte Carlo steps, or by the improved Montep(t)=2N,(t)/N—1. To calculate the relaxation lap(t) at
Carlo method$; ! that use the short-time stochastic behav-H,=0, we have developed the proceduteat is based on
ior of the nanoparticle magnetic moments to convert thghe analytical determination of the probability reorientation
Monte Carlo steps to real time units. The main advantage off the nanoparticle magnetic moments, and on the numerical
the method proposed in Ref. 5 is that it does not use théetermination of the nanoparticle ensemble states. Its impor-
Monte Carlo approach, so the last complicated problem doeigint feature consists of the fact that the real dipolar fields
not appear. This feature of the method and its applicability tacting onm;(t) are taken into account.
the study of magnetic relaxation over ten decades oftime  Here, we generalize this procedure to thg#0 case and
make it a very useful tool in this domain. apply it to study the magnetic relaxation in ensembles of Co

In this letter, we extend our method to the case of nonhanoparticles. The generalization consists of the derivation

of the exact formula for the calculation of the probability
ag| o reorientation of the nanoparticle magnetic moments for
ectronic mail: denisov@sumdu.edu.ua
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trohidou@ims.demokritos.gr backward Fokker—Planck equation, and the numerical proce-
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FIG. 1. Plots ofp(t) (curve 3 andpS,(t) (curve 2 for d°=3r. FIG. 2. Plots ofp(t) (curve 1, pS,(t) (curve 2, p"(t) (curve 3, andpﬂﬂ(t)
m (curve 4 for dS=d"=23r.

dure of Ref. 5 to calculate the relaxation laft) in these The feat ¢ tic relaxation i bl fC

ensembles. We choose the basic nanoparticle ensemble for € fealures of magnetic relaxation in ensemoles of +.0

our simulation in the form of squaréor square lattick or nanoparticles, which arise from the different nanoparticle ar-

hexagonal(for hexagonal lattice box and surround it by rangemgnt n square and hexagonal Iatyc.es, are demon-
ftrated in Figs. 2 and 3. If the lattice spacitigs the same

eight or six identical ensembles, respectively. To calculat : ” -
9 b Y or both lattices(Fig. 2), then the difference between the

the dipolar field acting on a nanoparticle, we consider thi laxation | It inly f the diff t ber of
nanoparticle as the central one in the box of the same size glaxation laws resufts mainly from the diiferent number o

the basic and we include the nanoparticles, which belong t e nearest sites in these lattid@svs 6. At t=0 the local

this box. Increase of the size of the basic box leads to reducqipOIar fields in hexagonal lattices are larger than in square
ones, so the initial phase of magnetic relaxation occurs faster

tion of the boundary effects and, to practically eliminate, h | lati Ab— dH-—0 th diti
them, we chose the size of the square and hexagonal boxg’§ exagr(])na attlces.s = e?]n 0=0 the conditions
equal to 10d and 6@, respectively. p(e) =p7(22) =0 andp (=) = py(>) =0 hold. Each mag-

To gain more insight into the magnetic relaxation Wenetic moment in a square lattice is surrounded, on average,
also calculate the relaxation law:(t) within the mean-field by four opposite oriented magnetic moments, whereas in a

approximation. As this approach ignores the correlation efhgxago;al Iattice_z—by four Op{?;])Sith an|o_|| byotwo sirlgilarly
fects, the difference betweeift) andp«(t) results from the orlent(; me;gnetlc rr;oments. here ores, b>0 [see Ihg
correlations of the nanoparticle magnetic moments. In wha?(a)] t esn pmf(m)ipmf(m)>0’ P (O(.))>p.(oo)>0’ 'and t.e
follows, the superscripts and” on p(t), pmi(t), andd de- curvesp®(t) and p"(t) have the unique intersection point

note the square and hexagonal lattice, respectively. =t (t31~13-59h3 forH,=500 Os. If |:0<0 [ssee Fig. 20)]
The role that the correlation effects and the bias figjd 118" Pmi(*?) <pm(*) <O and, sincep’ (=) <p*() <0, the
play in magnetic relaxation is illustrated in Fig. 1. We
present the numerical results for ensembles of Co nanopar-
ticles characterized by the parametetg=6400 Oe H, is
the anisotropy field m/V=1400 G { is the nanoparticle
volume), A=0.2 (\ is the Landau—Lifshitz damping param-
eten, r=4 nm, andT =300 K. Due to the correlations of the
nanoparticle magnetic moments, fdp=0 the actual mag-
netic relaxation occurs faster on small times and more slowly
on large times, than the mean-field theory predisee Fig.
1(a)]. In this case the curvgs’(t) andp; «(t) are intersected
at the timet=t;,, and p3(»)=pp()=0. In equilibrium,
the local dipolar fields have, on average, the same directions
as the magnetic moments and the mean dipolar field equals
zero (for Hy=0), therefore forH,#0 the condition| pS(c)|
<|pm(*®)| must hold. For Hy<O we have
pini(®) <p3(*) <0, and the curveps(t) andp;(t) are in-
tersected only once, as in thé,=0 case. IfHy>0, then
peni()>p3(*) >0, for small enough values dfi, these
curves are intersected twi¢see Fig. 1b)], with increasing
Ho the time interval (,ty) is decreasing, antpt)  ,n (t) (curves 4 on small(a and large(b) time scales ford"=3r, d°

>p3(t) (t>0) for largeH, [see Fig. 2a), curves 1 and R =d"3¥42Y2 and H,=0.
Downloaded 28 May 2004 to 140.105.16.2. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

Reduced magnetization

Time (s)

FIG. 3. Plots ofpS(t) (curves }, pS(t) (curves 2, p"(t) (curves 3, and
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curvesp®(t) andp"(t) have two intersection points=t; and  bias magnetic field. We have demonstrated its efficiency for
t=t, (t;~0.01 s,t,~0.33 s forHy=—500 Oe. the analysis of the relaxation law features arising from the
Figure 3 presents the character of magnetic relaxation imutual action of the dipolar correlations and bias field for
square and hexagonal lattices, with unit cells that have thdifferent ensembles of Co nanoparticles and we have shown
same area, i.e.df)?=(d")?3/2, atH,=0. Despite the fact that the correlation effects play an important role in magnetic
that each site in the hexagonal lattice has more nearest neigtelaxation on all times. We expect that, because of the above-
bors than the square one, the local and mean dipolar fields imentioned unique resources of the proposed method, it can
the square lattice exceed the corresponding fields in the hexe useful for the design of more reliable perpendicular
agonal one, sincds<d" (d°~0.931d"). Therefore the con- nanoparticle media.
ditions p"(t)>pS(t) and p?nf(t)>p;f(t) must hold for all
t>0 [at large times(see Fig. 8)) the distinction between . , _ _ _
ph(D) andp, (1) is not visible on the chosen scale of tine 721 e see oy Semihe s o Qo Derey Mg
On the other hand, for the same reasons as in the case prewpringer, Berlin, 2008 A. Moser, K. Takano, D. T. Margulies, M. Albre-
sented in Fig. (a), the curvespS(t) and pS(t), andp"(t) cht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phy35,[R157
and ph(t) are intersected once a&tt;, (t;,;~0.505 s and ,(2002. _
6.597x 10 3 s for the square and hexagonal lattice, respec- (Dl'gg'])'.‘oms’ R. M. White, and E. D. Dahlberg, Phys. Rev. Lel, 362
tively). 3S. I. Denisov and K. N. Trohidou, Phys. Status Solidi 89, 265(2002.
Sometimes the coefficient of magnetic viscosity “S. 1. Denisov and K. N. Trohidou, Phys. Rev.68, 184433(2001.
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