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The thermally activated magnetic relaxation in two-dimensional lattices of dipolar interacting
nanoparticles with large uniaxial perpendicular anisotropy is studied by a numerical method and
within the mean-field approximation for comparison. The role that the correlation effects play in
magnetic relaxation and the influence of lattice structure and bias magnetic field on the relaxation
process are revealed. The correlations of the nanoparticle magnetic moments enhance relaxation on
small times, delay it on large times, and reduce the steady-state absolute magnetization at nonzero
bias fields. In a hexagonal lattice, magnetic relaxation on small times occurs faster and the
steady-state absolute magnetization has the larger magnitude than in a square lattice with the same
lattice spacing. ©2004 American Institute of Physics.@DOI: 10.1063/1.1759782#

The two-dimensional~2D! ensembles of uniaxial ferro-
magnetic nanoparticles, whose easy axes of magnetization
are perpendicular to the nanoparticles’ plane, represent an
important class of perpendicular magnetic recording media.1

From a technological point of view, the main characteristic
of these media is the average time of data storage, which is
one of the numerical parameters that describe the thermally
activated magnetic relaxation. Due to the dipolar interaction
between nanoparticles, its analytical description in such en-
sembles is a very complicated problem, which was solved
only within the mean-field2,3 and fluctuating4 theories of
magnetic relaxation. The former deals with the mean com-
ponent of the dipolar field acting on the nanoparticles, and
the latter accounts of both the mean and fluctuation compo-
nents. However, the correlations of the nanoparticle magnetic
moments, arising from the dipolar interaction, also play an
important role, especially on the final phase of magnetic re-
laxation. To study the features of magnetic relaxation in such
ensembles, which are conditioned by the correlation effects,
we have developed a method for its numerical simulation at
zero bias field.5 Usually, magnetic relaxation in ensembles of
dipolar interacting nanoparticles is simulated either by the
conventional Monte Carlo method,6,7 where the role of time
plays the Monte Carlo steps, or by the improved Monte
Carlo methods,8–11 that use the short-time stochastic behav-
ior of the nanoparticle magnetic moments to convert the
Monte Carlo steps to real time units. The main advantage of
the method proposed in Ref. 5 is that it does not use the
Monte Carlo approach, so the last complicated problem does
not appear. This feature of the method and its applicability to
the study of magnetic relaxation over ten decades of time5

make it a very useful tool in this domain.
In this letter, we extend our method to the case of non-

zero bias magnetic fields, and we present results obtained
within its framework, which clarify the role that the correla-
tion effects, bias field, and lattice structure play in the mag-
netic relaxation. We consider the 2D ensembles of spherical
nanoparticles with a radiusr , which occupy the sites of a
square or hexagonal lattice with lattice spacingd, and whose
easy axes of magnetization are perpendicular to the lattice
plane (xy plane!. We also assume that:~a! the nanoparticle
magnetic momentsmi(t) ~the index i labels the nanopar-
ticles! perform a coherent rotation (umi(t)u5m), ~b! a bias
magnetic fieldH0k ~k is the unit vector along thez axis! acts
on eachmi(t), and~c! the initial conditionmi(0)5mk holds
for all i .

If the potential barriers between the equilibrium direc-
tions of all mi(t) are much larger than the thermal energy
kBT (kB is the Boltzmann constant,T is the absolute tem-
perature!, then the vectorsmi(t) fluctuate within small vi-
cinities of thek and 2k directions, and they are reoriented
occasionally. In this case the average numbersN1(t) and
N2(t) of positively and negatively oriented magnetic mo-
ments in a lattice region that containsN~@1! nanoparticles
are well defined (N1(t)1N2(t)'N), and we can introduce
the reduced magnetization of the nanoparticle ensemble as
r(t)52N1(t)/N21. To calculate the relaxation lawr(t) at
H050, we have developed the procedure5 that is based on
the analytical determination of the probability reorientation
of the nanoparticle magnetic moments, and on the numerical
determination of the nanoparticle ensemble states. Its impor-
tant feature consists of the fact that the real dipolar fields
acting onmi(t) are taken into account.

Here, we generalize this procedure to theH0Þ0 case and
apply it to study the magnetic relaxation in ensembles of Co
nanoparticles. The generalization consists of the derivation
of the exact formula for the calculation of the probability
reorientation of the nanoparticle magnetic moments for
H0Þ0. We use this formula, derived from the corresponding
backward Fokker–Planck equation, and the numerical proce-
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dure of Ref. 5 to calculate the relaxation lawr(t) in these
ensembles. We choose the basic nanoparticle ensemble for
our simulation in the form of square~for square lattice! or
hexagonal~for hexagonal lattice! box and surround it by
eight or six identical ensembles, respectively. To calculate
the dipolar field acting on a nanoparticle, we consider this
nanoparticle as the central one in the box of the same size as
the basic and we include the nanoparticles, which belong to
this box. Increase of the size of the basic box leads to reduc-
tion of the boundary effects and, to practically eliminate
them, we chose the size of the square and hexagonal boxes
equal to 100d and 60d, respectively.

To gain more insight into the magnetic relaxation, we
also calculate the relaxation lawrmf(t) within the mean-field
approximation. As this approach ignores the correlation ef-
fects, the difference betweenr(t) andrmf(t) results from the
correlations of the nanoparticle magnetic moments. In what
follows, the superscriptss and h on r(t), rmf(t), andd de-
note the square and hexagonal lattice, respectively.

The role that the correlation effects and the bias fieldH0

play in magnetic relaxation is illustrated in Fig. 1. We
present the numerical results for ensembles of Co nanopar-
ticles characterized by the parametersHa56400 Oe (Ha is
the anisotropy field!, m/V51400 G (V is the nanoparticle
volume!, l50.2 ~l is the Landau–Lifshitz damping param-
eter!, r 54 nm, andT5300 K. Due to the correlations of the
nanoparticle magnetic moments, forH050 the actual mag-
netic relaxation occurs faster on small times and more slowly
on large times, than the mean-field theory predicts@see Fig.
1~a!#. In this case the curvesrs(t) andrmf

s (t) are intersected
at the timet5t in , and rs(`)5rmf

s (`)50. In equilibrium,
the local dipolar fields have, on average, the same directions
as the magnetic moments and the mean dipolar field equals
zero ~for H050!, therefore forH0Þ0 the conditionurs(`)u
,urmf

s (`)u must hold. For H0,0 we have
rmf

s (`),rs(`),0, and the curvesrs(t) and rmf
s (t) are in-

tersected only once, as in theH050 case. IfH0.0, then
rmf

s (`).rs(`).0, for small enough values ofH0 these
curves are intersected twice@see Fig. 1~b!#, with increasing
H0 the time interval (t in ,t in* ) is decreasing, andrmf

s (t)
.rs(t) (t.0) for largeH0 @see Fig. 2~a!, curves 1 and 2#.

The features of magnetic relaxation in ensembles of Co
nanoparticles, which arise from the different nanoparticle ar-
rangement in square and hexagonal lattices, are demon-
strated in Figs. 2 and 3. If the lattice spacingd is the same
for both lattices~Fig. 2!, then the difference between the
relaxation laws results mainly from the different number of
the nearest sites in these lattices~4 vs 6!. At t50 the local
dipolar fields in hexagonal lattices are larger than in square
ones, so the initial phase of magnetic relaxation occurs faster
in hexagonal lattices. Att5` and H050 the conditions
rs(`)5rh(`)50 andrmf

s (`)5rmf
h (`)50 hold. Each mag-

netic moment in a square lattice is surrounded, on average,
by four opposite oriented magnetic moments, whereas in a
hexagonal lattice—by four opposite and by two similarly
oriented magnetic moments. Therefore, ifH0.0 @see Fig.
2~a!# then rmf

s (`).rmf
h (`).0, rh(`).rs(`).0, and the

curvesrs(t) and rh(t) have the unique intersection pointt
5t1 (t1'13.59 s forH05500 Oe!. If H0,0 @see Fig. 2~b!#
then rmf

s (`),rmf
h (`),0 and, sincerh(`),rs(`),0, the

FIG. 1. Plots ofrs(t) ~curve 1! andrmf
s (t) ~curve 2! for ds53r . FIG. 2. Plots ofrs(t) ~curve 1!, rmf

s (t) ~curve 2!, rh(t) ~curve 3!, andrmf
h (t)

~curve 4! for ds5dh53r .

FIG. 3. Plots ofrs(t) ~curves 1!, rmf
s (t) ~curves 2!, rh(t) ~curves 3!, and

rmf
h (t) ~curves 4! on small ~a! and large~b! time scales fordh53r , ds

5dh31/4/21/2 andH050.
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curvesrs(t) andrh(t) have two intersection pointst5t1 and
t5t2 (t1'0.01 s,t2'0.33 s forH052500 Oe!.

Figure 3 presents the character of magnetic relaxation in
square and hexagonal lattices, with unit cells that have the
same area, i.e., (ds)25(dh)2A3/2, atH050. Despite the fact
that each site in the hexagonal lattice has more nearest neigh-
bors than the square one, the local and mean dipolar fields in
the square lattice exceed the corresponding fields in the hex-
agonal one, sinceds,dh (ds'0.931dh). Therefore the con-
ditions rh(t).rs(t) and rmf

h (t).rmf
s (t) must hold for all

t.0 @at large times~see Fig. 3~b!! the distinction between
rmf

h (t) andrmf
s (t) is not visible on the chosen scale of time#.

On the other hand, for the same reasons as in the case pre-
sented in Fig. 1~a!, the curvesrs(t) and rmf

s (t), and rh(t)
and rmf

h (t) are intersected once att5t in (t in'0.505 s and
6.59731023 s for the square and hexagonal lattice, respec-
tively!.

Sometimes the coefficient of magnetic viscosity
S52dr(t)/d ln t is used, to characterize the magnetic prop-
erties of nanoparticle ensembles. IfS'constant on a wide
time interval, as in the case of log-normal distribution for
nanoparticle diameters, then the parameterS is an important
characteristic of the nanoparticle ensemble, which defines the
relaxation law on that interval. For the considered en-
sembles,S depends strongly ont, therefore this parameter
does not play a special role in our case.

In conclusion, we have generalized the method devel-
oped in Ref. 5 to study the magnetic relaxation in 2D en-
sembles of dipolar interacting nanoparticles subjected to a

bias magnetic field. We have demonstrated its efficiency for
the analysis of the relaxation law features arising from the
mutual action of the dipolar correlations and bias field for
different ensembles of Co nanoparticles and we have shown
that the correlation effects play an important role in magnetic
relaxation on all times. We expect that, because of the above-
mentioned unique resources of the proposed method, it can
be useful for the design of more reliable perpendicular
nanoparticle media.
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