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A new regime of the directed transport of particles in a random sawtooth potential 
driven by an alternating external force is studied. For this transport regime, which is 
characterized by zero average velocity of particles and a finite transport distance, the 
variance of coordinates of particles localization is calculated exactly and analyzed for 
a particular case of the random sawtooth potential. It has been established that the 
variance plays an important role in this transport regime. In particular, the root-
mean-square displacement of particles can essentially exceed their average 
displacement in the preferred direction. 
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1. INTRODUCTION 
 

The study of ratchet systems, i.e., systems in which particles or other 
objects acquire directed motion under the action of undirected (random or 
periodic) forces, is of great interest. In particular, the ratchet-effect forms 
the theoretical basis of the so-called molecular motors, i.e., nanodevices, 
that transform thermal, chemical or any other energy into mechanical one 
[1-3]. 
 Usually the action of ratchet systems on transported particles is modelled 
by spatially asymmetric periodic potentials, and the dynamics of these 
particles is described by the Langevin equation. The assumption of spatial 
periodicity of ratchet potentials essentially simplifies the analysis of the 
solutions of this equation, but actually it is difficult to realize in practice. 
The reason is that there always exist unremovable inhomogeneities in 
nanodevices, which violate a strict periodicity of model potentials. It is 
clear, therefore, that to study the transport properties of particles in such 
ratchet systems the random character of ratchet potentials should be taken 
into account. Within this approach it has been established, in particular, 
that inhomogeneities decrease the average velocity of particles [4, 5] and 
lead to the diffusion motion [6-8]. 
 Recently, on the example of a random sawtooth potential we showed [9] 
that in disordered ratchet systems a new transport regime of particles can 
exist. In contrast to usual regime, which is characterized by nonzero average 
velocity of particles and an arbitrary large transport distance, this transport 
regime is characterized by zero average velocity of particles and a finite 
transport distance. In particular, we derived the average value of the 
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maximum displacement of particles in the preferred transport direction. In 
this work we determine one more important characteristic of a new 
transport regime, namely, the variance of this displacement and analyze its 
dependence on the parameters of the model. 
 
2. EQUATION OF MOTION 
 

As in Ref. [9], we use the following dimensionless equation of particles 
motion: 
 

 ( ) ( )t tX g X f t  (X0  0). (1) 
 

Here Xt denotes the particle coordinate at time t; g(x)  –dU(x)/dx  g  
represents the dichotomous random force generated by a random sawtooth 
potential U(x) (see Fig. 1); f(t) is a periodic external force of a period 2T. 
We assume, that the random potential U(x), describing the influence of 
ratchet system, is characterized by (i) statistically independent random 
intervals sj, distributed with the probability densities p+(s) and p–(s) for 
even numbered (j  2n, n  0, 1,…) and odd numbered (j  2n + 1) intervals, 
respectively; (ii) two slopes –g+ and g– (g+ > g– > 0); and (iii) the condition 

g+s+  g–s–, where 
0

( )s dssp s  are the average lengths of even (s+) and 

odd (s–) intervals. In compliance with the last condition the average force 

lim(1 2 ) ( )L
LL

L dxg x  acting on a particles in this potential equals zero. 

 

 

Fig. 1 – Schematic representation of one realization of the random sawtooth potential 
(a) and the corresponding realization of the random dichotomous force (b) 
 

 Periodic force f(t) is assumed to be alternating, i.e., f(t)  (–1)k+1f, where 
f (> 0) is the force amplitude; k  [t/T] + 1; and [t/T] is the integer part of 
t/T. As in the case of the random dichotomous force g(x), the average value 

of the force f(t) equals zero as well: 
0

lim(1 ) ( ) 0dtf t . Although the 

average values of the forces are zero, in the present system the particle 
transport both with nonzero and zero average velocity can exist [9]. 
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3. TRANSPORT WITH ZERO AVERAGE VELOCITY 
 

The average transport velocity of particles is defined by the following 
formula: 
 

 lim t
T

t

X
t

, (2) 

 

where the angular brackets denote an averaging over all realizations of a 
random sawtooth potential. According to this definition, the unlimited 
growth of Xt  ( Xt  > 0 if g+ > g–) at t   is the necessary condition of 
existence of nonzero particles velocity. The transport regime, we have 
interested with, is characterized by finite value of X , and, as a result, by 
zero average velocity T  0. As it was shown in [9], this regime takes place 

in those cases only when the probability ( )dsp s  that the length of the 

intervals s2n+1 exceeds the distance   (f – g–)T is not zero. In other words, 
the average velocity equals zero if realizations of a random dichotomous 
force g(x) contain so long intervals s2n+1 that particles cannot overcome 
them in a positive direction of the axis x during the half-period T. 
 According to the above-mentioned statement, the distance 
 

 
2

2
1

n

n j
j

l s  (3) 

 

from the origin of the coordinates to the first “impassable” interval s2n+1 
(n  0, 1,…), located in the positive part of the axis x, is of great interest 
for the description of the features of this transport regime. If f  (g–, g+) 
then a particle, initially placed in the origin of the coordinates, after some 
time will certainly be in the neighborhood of a point x  l2n, where it will 
oscillate. If f > g+ then particle can get the vicinity of this point with some 
probability only, since it can move with finite probability in the negative 
part of the axis x. 
 Since the function f(x) is random, the distances l2n are random as well. 
Therefore the main quantity characterizing these distances is their 
probability density P(l), which can be written as follows: 
 

 2 1 2 1 2 2 2
1 1 10 0 0 0

( ) (1 ) ( ) ( ) (l ) (1 ) ( )
n n

j j k k n
n j k

P l w ds p s ds p s l w l ,(4) 

 

where ( ) is the Dirac delta-function; 
0

( )w dsp s  is the probability that 

the length of odd intervals does not exceed . The most important 
characteristics of the random variable l2n are its average value l  and 

variance 2. For the average value, determining as 
0

( )l dl lP l , in 
general case of arbitrary probability densities p+(s) and p–(s) we obtained a 
simple formula 
 

 
1

s s w
l

w
, (5) 
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where 

 
0 0

( ), ( )s dssp s s dssp s . (6) 

 

Analysis of the expression (5) showed, in particular, that the transition 
from one transport regime to another can occur under certain conditions. As 
for the variance, which is a measure of the spreading of particle 
localization, it was not studied before. 
 
4. VARIANCE OF THE COORDINATES OF PARTICLES LOCALIZATION 
 

According to the definition, the variance is given by 2 2 2l l , where 
 

 2 2

0

( )l dl l P l . (7) 

 

Substituting the probability density (4) into (7) and using the delta-function 
properties, we obtain: 
 

 22
2 1 2 1 2 2 2

1 1 10 0 0 0

(1 ) ( ) ( )
n n

j j k k n
n j k

l w ds p s ds p s l . (8) 

 

For simplifying the further calculations we use the formula 
 

 2 2 2
2 2 1 2 1 2 1 2 2 2 2 1 2

1 1 1 1 1 1 1 1
2

n n n n n n n n

n m m k m m k m k
m m k m m k m k

k m k m

l s s s s s s s s , (9) 

 

which follows from definition (3). Integration of each term gives: 
 

2 1
2 1 2 1 2 2 2 1

1 1 10 0 0 0

( ) ( )
n n n

n
j j k k m

j k m
ds p s ds p s s nq w , 

2 2
2 1 2 1 2 2 2 1 2 1

1 1 1 10 0 0 0

( ) ( ) ( 1)
n n n n

n
j j k k m k

j k m k
k m

ds p s ds p s s s n n s w , 

 2
2 1 2 1 2 2 2

1 1 10 0 0 0

( ) ( )
n n n

n
j j k k m

j k m
ds p s ds p s s nq w , (10) 

2
2 1 2 1 2 2 2 2

1 1 1 10 0 0 0

( ) ( ) ( 1)
n n n n

n
j j k k m k

j k m k
k m

ds p s ds p s s s n n s w , 

2 1
2 1 2 1 2 2 2 1 2

1 1 1 10 0 0 0

( ) ( )
n n n n

n
j j k k m k

j k m k
ds p s ds p s s s n s s w , 

 

where 

 2 2

0 0

( ), ( )q dss p s q dss p s . (11) 
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 Thus, in accordance with the above results, formula (8) becomes 
 

 2 1 2 2 2 2 1

1
(1 ) ( 1) ( 1) 2n n n n n

n
l w nq w n n s w nq w n n s w n s s w .(12) 

 

Series in (12) can be easily calculated using the geometric series formula 
1

0 (1 )n
n w w . This yields 

 

 
2

2
2

2
1 1

q q w s s s s w
l

w w
. (13) 

 

Then taking into account expression (5) for the average particles velocity 
and definition of the variance of coordinates of particles localization 

2 2 2l l , we obtain 
 

 2 2
2

1

q q w s s
l

w
. (14) 

 

 As an application example, we consider the exponential distribution of 
intervals sj, assuming that ( ) sp s e , where + and – are the positive 
distribution parameters for even and odd intervals, respectively. According 
to definitions (6) and (11), in this case 
 

 2
2

1 2 1
, , 2 , 1

s
s q q e s e e , (15) 

 

and the condition that the average value of the random dichotomous force 
equals zero, g+s+  g–s–, allows to exclude from consideration, for example, 

parameter +: +  +g+/g–. Finally, taking into account that 1w e , 
from (5) and (14) we find 
 

 
1

1 1
g

l e
g

 (16) 

and 

 
2

2 2 2
2 2

2 2
1 1 1

g g g
e l

g g g
. (17) 

 

In particular, at   0 and    these formulas reduce, respectively, to 
 

 
2

2
2

2
,

g g
l

g g
 (18) 

and 

 2 2
1

1 ,
g

l e l
g

. (19) 

 

 The considered example shows that in random ratchet systems the 
variance of the coordinates of particles localization plays the important role 
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both at  << 1 (the case of small amplitude values and/or external force 
period) and at  >> 1. According to (19), in the last case the root-mean-
square value of the coordinates of particles localization  has the same order 
as the average value l , i.e.,   l . In the first case the variance plays a 

more important role since  >> l, as it follows from (18). 
 
5. CONCLUSIONS 
 

A new regime of particles transport induced by an alternating external force 
in a random sawtooth potential is studied. For this transport regime, which 
is characterized by zero average velocity of particles and their finite 
displacement in a preferential direction, the explicit formula for the 
variance of the coordinates of particles localization is found and its analysis 
in particular case of a sawtooth potential is carried out. It is established 
that the variance is an important characteristic of the given transport 
regime. Particularly, the root-mean-square value of the coordinates of 
particles localization can essentially exceed the average distance of their 
displacement in a preferential direction. 
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