Топологія поверхні шаруватих кристалів *p*-InSe і *n*-SnS_{2-x}Se_x (0 ≤ *x* ≤ 1) та гетеропереходи на їх основі

В.М. Катеринчук, З.Р. Кудринський*, З.Д. Ковалюк

Інститут проблем матеріалознавства ім. І.М. Францевича Національної академії наук України, Чернівецьке відділення, вул. Ірини Вільде, 5, Чернівці 58001, Україна

(Одержано 08.03.2012, у відредагованій формі – 24.05.2012, опубліковано online 04.06.2012)

На вирощених шаруватих кристалах *p*-InSe і *n*-SnS_{2-x}Se_x при допомозі атомно-силового мікроскопа проведені дослідження поверхні цих матеріалів. Методом оптичного контакту створено гетеропереходи *p*-InSe–*n*-SnS_{2-x}Se_x і досліджені їх спектральні та вольт-амперні характеристики.

Ключові слова: атомно-силова мікроскопія, шаруваті кристали, гетеропереходи, спектральні характеристики, вольт-амперні-характеристики.

PACS numbers: 73.40.Lq, 81.16.Dn

1. ВСТУП

Тверді розчини на основі шаруватих кристалів $SnS_2 - SnSe_2$ [1] дозволяють плавно змінювати пирину забороненої зони при переході від однієї сполуки до іншої і, таким чином, смуга фоточутливості на їх основі може бути змінена в широких межах. З цією метою були вирощені кристали $SnS_{2-x}Se_x$ ($0 \le x \le 1$), де x визначає склад твердих розчинів SnS_2 -SnSe_2, і виготовлені гетеропереходи n-SnS_{2-x}Se_x – p-InSe методом оптичного контакту [2]. Ефект "вікна" і зосередження збідненої області в базовому InSe забезпечують максимальний струм від збирання гетеропереходом фотогенерованих носіїв. Це тому, що в порівнянні з InSe тверді розчини мають більш низький питомий опір і більшу ширину забороненої зони.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Монокристали $\text{SnS}_{2-x}\text{Se}_x$ ($0 \le x \le 1$) вирощувалися методом хімічних транспортних реакцій в кварцевих ампулах. Продукт вирощувався у вигляді хаотично орієнтованих по ампулі пластинок різних розмірів і товщини. Усі пластинки мали дзеркальну поверхню. З ефекту Холла встановлено, що при x = 0 зразки мала *n*-тип провідність з концентрацією основних носіїв струму $n \sim 10^{16} \cdot 10^{17}$ см⁻³ і рухливість $\mu_{\perp c} \sim 20$ см²/(В с), де C – кристалографічна вісь, що співпадає з нормаллю до площини шару.

Кристали InSe *p*-типу провідності вирощувалися вертикальним методом Бріджмена. Злитки кристалів мали в діаметрі 16-18 мм, а довжина складала – 6-10 см. Завдяки шаруватій структурі тонкі пластини з цих злитків вирізалися за допомогою леза бритви. Додаткове відщеплення шарів за допомогою липкої стрічки дозволяло отримувати зразки з дзеркальною поверхнею без подряпин та інших ушкоджень. Оскільки спеціально нелеговані кристали мають завжди *n*-тип провідність, то для її зміни вони легувалися домішкою кадмію у кількості 0,1-0,5 вагових %. Холлівські виміри дозволили визначити, що концентрація основних носіїв струму складає $p \sim 5 \cdot 10^{14} \cdot 10^{15}$ см⁻³, а їх рухливість – $\mu_{\perp c} \sim 80 \cdot 100$ см²/(В с).

Свіжосколені пластини SnS_{2-x}Se_x і InSe приводилися в механічний тісний контакт. Утримання цих

різнорідних пластин аналогічно зв'язку шарів в кожному з шаруватих кристалів, яке забезпечується силами Ван-дер-Ваальса. Для широкозонного фронтального напівпровідника використовувалися тонкі (20-30 мкм) пластини SnS_{2-x}Se_x, як базового *p*-InSe – завтовшки 200-400 мкм. Для струмових контактів застосовувався чистий індій. Площа виготовлених зразків складала 0,08-0,12 см².

Спектри фоточутливості виготовлених гетеропереходів досліджувалися за допомогою монохроматора МДР-3 з роздільною здатністю 2,6 нм/мм. Усі спектри нормувалися відносно кількості падаючих фотонів.

Вольт-амперні характеристики (ВАХ) гетеропереходів досліджувалися на установці "Schlumberger SI 1255" з комп'ютерним інтерфейсом.

Досліджено поверхні шаруватих кристалів InSe, SnS₂ и SnSSe за допомогою атомно-силової мікросконії (Nanoscope IIIa Dimension 3000 SPM (Digital Instruments, USA)). Для поверхні InSe в площині (001) середньоквадратичне значення її шорсткості складає ~ 0,053 нм. Це значення свідчить про високу якість сколу кристала (рис. 1, а).

На рис. 1, б добре видно, що поверхня SnS_2 складається із смужок нашарувань речовини, які мають ступінчастий характер з кроком сходинки ~ 0,345 нм. Така картина поверхні обумовлена характером росту самих кристалів – методом хімічних транспортних реакцій. Це свідчить про те, що формування кристала з окремих молекул SnS_2 , під час росту, не має площинного характеру. Поверхня кристалів SnSSeдосить подібна до поверхні SnS_2 , але, у даному випадку, крок сходинки становить ~ 0,539 нм.

3. РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ТА ЇХ ОБГОВОРЕННЯ

Спектральні залежності квантової ефективності фотоструму досліджуваних гетеропереходів показані на рис. 2.

Смуга фоточутливості гетероперехода визначається поглинанням світла у відповідних напівпровідниках. Довгохвильовий край спектру різних гетеропереходів в усіх випадках обумовлений поглинанням світла в InSe, ширина забороненої зони якого E_g при кімнатній температурі дорівнює 1,2 eB [7].

2077-6772/2012/4(2)02042(4)

^{*} kudrynskyi@gmail.com

Рис. 1 – АСМ-зображення фрагментів поверхні кристалів: InSe (a), SnS_2 (б), SnSSe (в)

Широкозонний фронтальний напівпровідник не перешкоджає проходженню світла до тих пір, поки енергія квантів hv не досягне величини E_g SnS_{2-x}Se_x. В цьому випадку світло поглинається в приповерхневій області, не доходить до межі гетеропереходу, і розподіл носіїв, які фотогенеруються, припиняється. Відмітимо, що ширина забороненої зони твердого розчину може змінюватися від 0,97 еВ для SnSe₂ до 2.07 еВ для SnS₂ [8]. На рис. 3 показана залежність величини смуги фоточутливості ΔE від складу x твердого розчину SnS_{2-x}Se_x.

Рис. 2 – Спектр квантової ефективності фотоструму гетероперехода $SnS_{2,x}Se_x$ –InSe (x = 0; 0, 4; 1). T = 293 K

Рис. 3 – Залежність ширини смуги фоточутливості від величин
и \boldsymbol{x}

Добре видно, що зміною х можна створювати селективні фотоприймачі різної смуги фоточутливості.

 Φ отоелектричні параметри гетеропереходів $SnS_{2-x}Se_x$ -InSe приведені в таблиці 1.

Таблиця 1 – Фотоелектричні параметри гетеропереходів SnS_{2-x}Se_x–InSe. $T=293~{\rm K}$

x	Uxx, B	$J_{\kappa 3}$, м A /см 2	φ_b , eB	ΔE , eB
0	0,5	6,8	0,75	1
0,4	0,33-0,35	1,25	0,35	0,8
0,5	0,3-0,35	1,0	0,35	-
1	0,34-0,4	0,33	0,4	0,32

Результати вимірів ВФХ гетеропереходів показали, що в координатах $1/C^2$ від U вони мають лінійний характер. Це свідчить про різкий тип всіх створених *p*-*n*-переходів. Знайдене з ВФХ значення висоти потенційного бар'єру φ_b дозволили якісно проаналізувати енергетичну діаграму гетеропереходу. Значення φ_b приведені в таблицю 1. Внаслідок відмінності в концентраціях носіїв напівпровідників, збіднена область і увесь згин енергетичних зон приходиться на більш високоомний InSe. У усіх випадках досліджених гетеропереходів $\varphi_b < E_g/2$ при x > 0 (таблиця 1). Однак, для x = 0, навпаки, $\varphi_b > E_g/2$. У цьому випадку ми маємо ситуацію виникнення інверсійного шару поблизу міжфазної межі гетеропереходу I зміщення *p*-*n*-переходу в глибину InSe. Дета-

ТОПОЛОГІЯ ПОВЕРХНІ ШАРУВАТИХ КРИСТАЛІВ P-INSE I...

льніше характеристики гетеропереходів з великим потенційним бар'єром розглянуті в роботі [9]. Знайдені значення φ_b добре узгоджуються з вимірами фото-е.р.с. насичення гетеропереходів, які також приведені в таблиці 1.

Якість виготовлених гетеропереходів перевірялася на підставі температурних вимірів їх ВАХ. Для прикладу, на рис. 4 представлені ВАХ гетеропереходу $SnS_{2-x}Se_x$ —InSe при x = 1.

Рис. 4 – Температурні залежності ВАХ гетеропереходу SnS_{2-x}Se_x– InSe для x = 1: 1-300; 2-270; 3-240 К

З рисунка 4 видно, що існують дві лінійні ділянки на кривих I(U), відкладених в напівлогарифмічних координатах. Протяжна, перша з них, характеризується діодним коефіцієнтом ВАХ (*n*), що значно перевищує одиницю. Цю ділянку ВАХ гетеропереходу зазвичай пов'язують зі струмами втрат [10], оскільки їй відповідають низькі значення струму і нахил ВАХ, який визначає саме значення п, залежить від ретельності приготування зразків. Для короткої другої ділянки ВАХ експериментальні точки зіставлені з теоретично розрахованими ВАХ ідеальних діодів (пунктирна лінія), для яких n = 1 [11]. Добре видно якісний збіг цих кривих. Це дозволяє зробити висновок, що починаючи з деякої напруги прямий дифузійний струм через гетероперехід починає перевищувати струми витоків із-за різної експоненціальної залежності цих струмів. Тому основним механізмом протікання струму через гетероперехід SnSSe–InSe слід вважати дифузійний. Аналогічні ВАХ характерні і для гетеропереходів SnS_{2-x}Se_x–InSe з іншими значеннями x.

4. ВИСНОВКИ

1. Дослідження ACM-зображення поверхні InSe в площині (0001) показало, що шорсткість її складає ~ 0,053 нм. Це свідчить про високу якість сколу InSe. Поверхні кристалів SnS₂ і SnSSe подібні та складаються із смужок нашарувань речовини, які мають ступінчастий характер з кроком сходинок ~0,345 нм і ~0,539 нм відповідно.

2. Методом оптичного контакту напівпровідників виготовлені гетеропереходи $SnS_{2-x}Se_x$ -InSe. Тверді розчини SnS_2 -SnSe₂ сприяють отриманню кристалів з різною шириною забороненої зони: від 1,48 до 2,12 еВ при $0 \le x \le 1$. Використовувані в якості широкозонного вікна гетеропереходу вони змінюють його фотовідгук до потрібної ширини смуги фоточутливості. Аналіз електричних властивостей одержаних гетеропереходів свідчить, що вони відповідають діодам з ідеальними характеристиками: p-n-перехід має різкий характер, а експоненціальна залежність струму від напруги описується діодним коефіцієнтом n = 1 при U > 0,35 В.

Топология поверхности слоистых кристаллов *p*-InSe и *n*-SnS_{2-x}Se_x ($0 \le x \le 1$) и гетеропереходы на их основе

В.Н. Катеринчук, З.Р. Кудринский, З.Д. Ковалюк

Институт проблем материаловедения им. И.Н. Францевича Национальной академии наук Украины, Черновицкое отделение, ул. Ирины Вильде, 5, Черновцы 58001, Украина

На выращенных слоистых кристаллах *p*-InSe и *n*-SnS_{2*x*}Se_{*x*} при помощи атомно-силового микроскопа проведены исследования поверхности этих материалов. Методом оптического контакта созданы гетеропереходы *p*-InSe–*n*-SnS_{2*x*}Se_{*x*} и исследованы их спектральные и вольт-амперные характеристики.

Ключевые слова: атомно-силовая микроскопия, слоистые кристаллы, гетеропереходы, спектральные характеристики, вольт-амперные характеристики.

Surface Topology of *p*-InSe and n-SnS_{2-x}Se_x ($0 \le x \le 1$) Layered Crystals and Heterojunctions on Their Basis

V.M. Katerynchuk, Z.R. Kudrynskyi, Z.D. Kovalyuk

Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine, Chernivtsi Department, str. Iryna Vilde, 5, Chernivtsi 58001, Ukraine

The surfaces of the grown *p*-InSe and n-SnS_{2-x}Se_x layered crystals were studied by means of atomic force microscopy. By the method of optical contact we have created *p*-InSe–*n*-SnS_{2-x}Se_x heterojunctions and investigated their spectral and current-voltage characteristics.

Keywords: Atomic force microscopy, Layered crystals, Heterojunctions, Spectral characteristics, Current-voltage characteristics.

СПИСОК ЛІТЕРАТУРИ

- 1. Д.И. Блецкан, Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе (Ужгород: Закарпаття: 2004).
- В.Л. Бакуменко, В. Ф. Чишко, ФТП 11 №10, 2000 (1977). (V.L. Bakumenko, V.F. Chishko, Semiconductors 11, No10, 2000, (1977) In Russian).
- А. Милнс, Д. Фойхт, Гетеропереходы и переходы металл-полупроводник. (Москва: Мир: 1975).
- В.Н. Катеринчук, М.З. Ковалюк, А.Д. Огородник, *Неорг.* Материалы 32 № 8, 937 (1996).
- В.Н. Катеринчук, М.З. Ковалюк, Письма в ЖТФ 25 №2, 29 (1999) (V.N. Katerinchuk, М.Z. Kovalyuk, Tech. Phys. Lett. 25 No1, 54 (1999)).
- В.М. Катеринчук, М.З. Ковалюк, М.В. Товарнцький, УФЖ 45 №1, 87 (2000). (V.N. Katerinchuk, М.Z. Kovalyuk,

M.V. Tovarnitskii, Ukr. J. Phys. 45 No 1, 87 (2000)).

- Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. New Ser. Group III: Crystal and Solid State Physics. V. 17, (Ed. by O. Madelung) (Berlin e.a.: Springer: 1983).
- G. Domingo, R.S. Itoga, C.R. Kannewurf, *Phys. Rev* 143 No.2, 536 (1966).
- V.N. Katerinchuk, M.Z. Kovalyuk, J.Optoelectron. Adv. Mat. 4 No1, 40 (1997).
- В.А. Манассон, А.М. Малик, В.Б. Баранюк, *Письма в ЖТФ* 7 № 9, 549 (1981) (V.A. Manasson, А.М. Malik, V.B. Baranyuk, *Tech. Phys. Lett.* 7 No9, 549 (1999) In Russian).
- С. Зи, Физика полупроводниковых приборов. В 2 кн. Кн. 2, (Москва: Мир: 1984).