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We study the role of conductivity in the magnetization dynamics of single-domain ferromagnetic parti-

cles. Our approach is based on the coupled system of Maxwell’s and Landau-Lifshitz-Gilbert (LLG) equa-

tions that describes both the induced electromagnetic field and the magnetization dynamics. We show that 

the effective LLG equation for a conducting particle contains two additional terms compared to the ordi-

nary LLG equation. One of these terms accounts for the magnetic field of eddy currents induced by an ex-

ternal magnetic field, and the other is magnetization dependent and is responsible for the conductivity 

contribution to the damping parameter. By analytically solving Maxwell’s equations, we determine this 

contribution and demonstrate the importance of conduction effects for large nanoparticles. 
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1. INTRODUCTION 
 

The Landau-Lifshitz (LL) equation [1] and its modi-

fication, the Landau-Lifshitz-Gilbert (LLG) equation 

[2,3], are the basic equations for studying the magneti-

zation dynamics in ferromagnetic materials. Though 

these equations are equivalent from the mathematical 

point of view [4] (specifically, the LL equation reduces 

to the LLG one by a simple rescaling of the gyromag-

netic ratio and damping parameter), the latter is more 

preferable with the physical point of view. In general, 

the magnetic state in finite samples, e.g., in ferromag-

netic particles, is multi-domain, and so the magnetiza-

tion direction is space-dependent. However, if the par-

ticle size is small enough (usually of the order of a few 

tens of nanometers) then the formation of domain walls 

becomes energetically unfavorable (see, e.g., Ref. [5]). 

As a consequence, in this case the single-domain state 

with a uniform distribution of the magnetization is 

realized, and the LLG equation simplifies to that de-

scribing the coherent rotation of the magnetization. 

This equation is widely used for studying the nonlinear 

effects in the magnetization dynamics, regimes of 

forced precession, magnetization switching, etc. [6]. 

Moreover, if the effective magnetic field acting on the 

magnetization contains the noise term then the LLG 

equation becomes stochastic and it can be used to in-

vestigate the effects of thermal fluctuations, including 

the phenomenon of superparamagnetism [7]. In partic-

ular, within this approach we have studied a number of 

thermal effects in the magnetization dynamics driven 

by the rotating magnetic field [8−11]. 

Because the effective field in conducting ferromag-

nets contains the magnetic field of eddy currents, the 

magnetization dynamics in these materials differs from 

that in non-conducting ones. In the multi-domain case, 

this difference arises from the conductivity contribution 

to the effective mass and damping coefficient of domain 

walls. It was shown in particular that, due to the accel-

eration dependence of the dissipation, the eddy mass is 

negative [12,13]. Recently, this prediction has been 

confirmed by analyzing the leftward asymmetry exper-

imentally observed in the Barkhausen effect [14,15]. 

In the case of conducting single-domain particles, 

the LLG equation should be supplemented by Max-

well’s equations, which determine the eddy-current 

contribution to the effective magnetic field [16]. It is 

usually assumed that this contribution is negligible for 

nano-sized particles. However, in this paper we show 

that if the particle size is close to the critical one (which 

determines the appearance of the single-domain state 

of the particle) then the eddy-current contribution to 

the Gilbert damping parameter can be comparable with 

that of non-conducting samples. 

 

2. DESCRIPTION OF THE MODEL 
 

We consider a spherical particle of electrically con-

ductive and ferromagnetic material. It is assumed that 

the particle radius R is so small that the magnetic state 

of the particle is single-domain and the magnetization 

M depends only on time and has a constant value, i.e., 

 and . In this case, the dynam-

ics of M can be described by the LLG equation 
 

 , (2.1) 

 

where γ(>0) is the gyromagnetic ratio, the cross denotes 

the vector product, α(>0) is the damping parameter, Heff 

is the effective magnetic field acting on M, and  is the 

averaged magnetic field of eddy currents. Note that 

since α and Heff are assumed to be the same as in the 

case of non-conducting particles, the LLG equation (2.1) 

differs from the ordinary one only by the presence of the 

current-induced field . In general,  contains two 

contributions: one from the magnetic field  

induced by changing the magnetization and the other 

from the magnetic field  induced by a time-

varying external magnetic field. Thus, taking into ac-

count the linearity of the Maxwell equations, we obtain 

, where the overbar denotes an average 

over the particle volume V, i.e., 
 

  (2.2) 

 

and similarly for . Since the term  does not depend 

on the magnetization, it can be considered as an addi-

tional external magnetic field. It should be noted that 
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the source magnetic field ۶ଵ satisfies the quasi-
stationary Maxwell equations, which in some cases 
(e.g., when the external magnetic field is linearly polar-
ized) can be solved analytically [17−19]. 

Because we are interested here in deriving the ef-
fective LLG equation for conducting particles, it is nec-
essary to find the magnetic field H generated by the 
magnetization M. To this end, we should solve Max-
well’s equations for an arbitrary dependence of M on 
time. In the quasi-stationary approximation, i.e., when 
the condition ߱ ≪ ,holds ܴ/ܿߨ  these  equations  can  be  
written in the form 

 

 rot	۳ = − ସగ

Θ(ݎ) ௗۻ

ௗ௧
,								div	۳ = 0, (2.3) 

 

 rot	۶ = ସగ

Θ(ݎ)ܒ,								div	۶ = 0. (2.4) 

 
Here, ۳ = ,ܚ)۳ -is the electric field induced by chang (ݐ
ing the magnetization direction, ܒ = ,ܚ)ܒ  is the current (ݐ
density satisfying Ohm’s law ܒ = -σ is the conductivi ,۳ߪ
ty, c is the light velocity, ݎ =  (ݎ)and the function Θ ,|ܚ|
is defined as Θ(ݎ) = 1 at ݎ ≤ ܴ and Θ(ݎ) = 0 at ݎ > ܴ 
(we assume here that the origin of the coordinate sys-
tem is located at the center of the particle). It should 
also be noted that, besides the condition of quasi-
stationarity, in Eq. (2.4) we have used the condition 
߱ ≪  which permits us to neglect the displacement ,ߪߨ4
current density. 

 
3. SOLUTION OF MAXWELL'S EQUATIONS  

 
An important feature of the vector equation in 

Eq. (2.3), which represents Faraday’s law for the time-
dependent magnetization, is that it does not depend on 
H. This fact gives us an opportunity to solve Eqs. (2.3) 
and (2.4) exactly, i.e., determine both the magnetization-
induced electric and magnetic fields. 

 
3.1 Induced Electric Field 

 
Since, according to Eq. (2.3), the induced electric 

field is solenoidal, it can be written as ۳ = rot	۴. Assum-
ing that the vector potential ۴ = ,ܚ)۴  satisfies the (ݐ
Coulomb gauge condition div	۴ = 0 and  so  rotrot	۴ =
−Δ۴ (Δ is the Laplace operator), from Eq. (2.3) we ob-
tain the vector Poisson equation 

 

 Δ۴ = ସగ

Θ(ݎ) ௗۻ

ௗ௧
 (3.1) 

 
The solution of this equation, which vanishes at ݎ → ∞, 
is given by 

 

 ۴ = − ଵ

ௗۻ
ௗ௧
∫

ௗܚᇱ
|ᇱܚିܚ|

. (3.2) 
 

The integral in the right-hand side of Eq. (3.2) can easi-
ly be calculated yielding 

 

 ∫
ௗܚᇱ
|ᇱܚିܚ|

= ଶగ
ଷ

(3ܴଶ −  ଶ) (3.3)ݎ
 

ݎ) ≤ ܴ). Therefore, using the identity  
 

 rot	[݂(ݎ)(ݐ)܉] = − ଵ

ௗ()
ௗ

×(ݐ)܉  (3.4) ,ܚ
 

for the induced electric field inside the particle (i.e., 
when ݎ ≤ ܴ) we get 

 ۳ = − ସగ
ଷ

ௗۻ
ௗ௧
×  (3.5) .ܚ

 
A simple analysis shows that the lines of electric 

field (3.5) and so the lines of current density j lie in the 
planes perpendicular to the vector ݀ݐ݀/ۻ and have the 
form of concentric circles. Because E linearly depends 
on r, the concentration of these lines increases with 
increasing the circles radius. 

 
3.2 Induced Magnetic Field 

 
Similarly to the electric field, we represent the in-

duced magnetic field as ۶ = rot	۵ and choose the Cou-
lomb gauge (div	۵ = 0) for the vector potential ۵ =
,ܚ)۵ .(ݐ  In  this  case,  from Eq.  (2.4)  we again obtain the 
vector Poisson equation 

 

 Δ۵ = − ସగ

Θ(ݎ)(3.6) .ܒ 

 
Using Ohm’s law and Eq. (3.5), the physically relevant 
solution of this equation can be written in the form 

 

 ۵ = − ସగఙ
ଷమ

ௗۻ
ௗ௧
× ∫

ᇱܚᇱௗܚ
|ᇱܚିܚ|

. (3.7) 
 

Finally, calculating the integral in Eq. (3.7), 
 

 ∫
ᇱܚᇱௗܚ
|ᇱܚିܚ|

= ଶగ
ଵହ

(5ܴଶ −  (3.8) ܚ(ଶݎ3
 

ݎ) ≤ ܴ), and using the identity 
 

 rot	[݂(ݎ)(ݐ)܉× [ܚ = +(ݎ)ቀ2݂(ݐ)܉ ݎ ௗ()
ௗ

ቁ 
 

                            − ଵ

ௗ()
ௗ

(ݐ)܉) ∙  (3.9) ܚ(ܚ
 

(the dot denotes the scalar product), we arrive to the 
following expression for the magnetic field induced in-
side the particle: 

 

 ۶ = − ଵగమఙ
ସହమ

ቂ(5ܴଶ − ۻଶ)ௗݎ6
ௗ௧

+ 3 ቀௗۻ
ௗ௧
∙ ቁܚ  ቃ. (3.10)ܚ

 
It should be mentioned that though the magnetiza-

tion-induced magnetic field can also be calculated out-
side the particle (when ݎ > ܴ), we will use only the 
above result because it is this magnetic field which 
determines ۶ഥ  and influences the magnetization dynam-
ics. According to Eq. (3.10), the magnetic field H  is non-
uniform and possesses axial symmetry about the axis 
which passes through the particle center and is parallel 
to the vector ݀   .ݐ݀/ۻ

 
4. EFFECTIVE LLG EQUATION 

 
Next we use Eq. (3.10) and the definition (2.2) to cal-

culate ۶ഥ . Taking into account that 
 

ଵ

∫݀ܚ = 1,					 ଵ


∫݀ܚ	ݎ

ଶ = ଷ
ହ
ܴଶ, 

 

 ଵ

∫݀ܚቀ

ௗۻ
ௗ௧
∙ ቁܚ ܚ = ଵ

ହ
ܴଶ ௗۻ

ௗ௧
, (4.1) 

 
for the magnetization-induced magnetic field averaged 
over the particle volume we find 

 

 ۶ഥ = − ଷଶగమఙோమ

ସହమ
ௗۻ
ௗ௧

. (4.2) 
 

As was expected from axial symmetry of H, the average 
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field ۶ഥ  is parallel to the vector ݀ݐ݀/ۻ and, in accordance 
with Lenz’s law, its direction is opposite to ݀ݐ݀/ۻ. 

Now we are in a position to write the effective LLG 
equation. Substituting the current-induced magnetic 
field ऒ= ۶ഥ +۶ഥଵ [with ۶ഥ  given  by  Eq.  (4.2)]  into  
Eq. (2.1), we obtain the desired equation 

 

 ௗۻ
ௗ௧
= ×ۻߛ− (۶eff +۶ഥଵ) + ఈାఈᇱ

ெ
×ۻ ௗۻ

ௗ௧
, (4.3) 

 
where 

 

′ߙ  = ଷଶగమఙఊெோమ

ସହమ
. (4.4) 

 
According to this equation, the influence of conductivity 
on the magnetization dynamics is accounted for by both 
the magnetic field ۶ଵ, which modifies the external time-
dependent magnetic field, and the additional contribu-
tion ߙ′ to the damping parameter. 

In order to assess the importance of conduction ef-
fects, let us compare ߙ′ with the damping parameter ߙ, 
which is related to non-conducting materials. Usually, ߙ 
ranges from about 10ିସ to 10ିଵ (for example, in garnets 
.(10ିସ‒10ିଷ~ߙ  Considering  iron  particles  with ߪ  =
10ଵ଼sିଵ, ܯ = 1.7 ∙ 10ଷG and ߛ = 1.85 ∙ 10sିଵOeିଵ, from 
Eq. (4.4) one gets ߙᇱ ≈ 2.5 ∙ 10ିܴଶ, where R is measured 
in nanometers. Because particles are considered to be 
single-domain, their radius must not exceed some criti-
cal value ܴୡ୰, i.e., ܴ < ܴୡ୰. For iron particles ܴୡ୰ ≈
10	nm, therefore max{ߙᇱ} =	 ᇱ|ோୀோౙ౨ߙ ≈ 2.5 ∙ 10ିସ. These 
estimations show that for rather large nanoparticles, ߙ′ 

can be of the order of ߙ. Clearly, in these cases the con-
duction effects cannot be neglected, and the effective 
LLG equation (3.4) should be used for studying the 
magnetization dynamics. 
 
5. CONCLUSIONS 

 
We have derived the effective Landau-Lifshitz-

Gilbert equation that describes the magnetization dy-
namics in conducting ferromagnetic nanoparticles. The 
influence of conductivity is accounted in this equation 
by two terms. The first accounts for the magnetic field 
of eddy currents that are induced by the external time-
dependent magnetic field. Because this induced field 
does not depend on the magnetization, it can be consid-
ered as an addition external magnetic field. 

The second term describes the influence of the 
magnetic field of eddy currents that are induced by the 
time-dependent magnetization. By solving the corre-
sponding Maxwell’s equations, we have shown that this 
influence is completely accounted by an addition con-
tribution to the damping parameter. It has been estab-
lished that for large nanoparticles a given contribution 
is essential and cannot be neglected. 
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