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By using the advanced nano-approach processes and phenomena in self-organizing colloidal systems 

are studied. The conditions of appearance of self-organized phenomena are determined and also ranges of 

operation of diffusion, capillary, and fractalization mechanisms are found. 
 

Keywords: Self-organization, Colloidal system, Fractal and nano-sized structures, Capillary and diffusion 

phenomena. 

PACS numbers: 05.65. + b, 61.43. Hv 

 

 

1. INTRODUCTION 
 

An increasingly growing interest in the capability of 

nano-sized entities to self-organization and designing, 

on this basis, practically important devices is well un-

derstood and, for the most part, dictated by successes 

in nanoelectronics [1]. To implement the processes of 

self-assemblage at nano-level requires finding effective 

driving parameters that must be, obviously, associated 

with the size and structure of micro- and nanoparticles 

in space-organized systems [2, 3] including external 

gradient fields [4, 5]. 

 

2. EXPERIMENTAL RESULTS AND DIS-

CATIONS 
 

The object of the paper was to study sizes, chemical 

structure, and elemental distribution of self-organized 

entities in micro- and nanosystem region formed from 

colloidal carbon-bearing specimen, features and regu-

larities of the formation on solid-phase surfaces. 

Samples from natural doped carbon-bearing peat 

have a set of properties (the capability to microphase 

stratification, the existence of heterogeneous and het-

erophase micro- and nano-structure and others) that 

add to the study of mechanisms of fractal formation on 

nano-scale level. The samples were prepared in condi-

tions limited in diffusion (the drop deposition method) 

at which: Eb > Einter ≥ Ekin > Ed, that is the bonding 

energy of particles with a substrate (Eb) was greater 

than the intermolecular interaction energy (Einter), ki-

netic (Ekin), and also the energy of their diffusion (Ed). 

This condition is supported by the estimation of values 

of relevant energies with consideration for given in 

Fig. 1a their confocal microscopic (CM) (Omega Scope, 

AIST-NT) images at magnifications of 505  to 2830  

shows microstructure formation at the drop’s edge af-

ter drying. Fig.1b gives electron-microscopic (SEM) 

image of structures within the central region, Fig. 1c – 

atomic force (Smart SPM AIST-NT) microscopic (AFM) 

image of structures in the intermediate region, namely, 

between the edge and the center. 

 
 

 
 

 
 

Fig. 1 – Images of structural formations: a – KM at the edge 

at 2830 ; b – SEM in the central part at 7000 ;  

c – AFM image of the part of the fractal 
 

The distribution of chemical elements in regions 

given in Fig. 1a-c obtained with scan electron micro-

scope (SEM) with energy dispersive adapter (EDA) 

a 

b 

c 
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(JEOLJSM6610LV, EDX Oxford Instruments) is 

shown in Fig. 2. From all metals found by EDA tech-

nique - Na, Si, Cu, K, Ca, Fe, Zn, Mn in fractal branch-

es (Fig. 1c) Al (27 %) had the maximum content. 

Whereas it’s content in fractal center was 9-fold lower, 

and at the drop’s edge was lower than 1 %. Among all 

found metals Al had the maximum content. Also, alu-

mosilicate phases in organic carbon formations were 

found to be present in dominant contents. According to 

X-ray phase analysis (XRD) data (GBC ЕMMA, CuKα) 

a clear-cut line 3.32 Å corresponding to 

Al2О3  2SiО2  2Н2О appeared. All other metals listed 

were found to be equal in content in all regions studied 

and was not greater than 1 %. According to XRD data 

identified were the compounds of the type: MgSО4, 

CaSО4  nН2О, SiО2  nН2О, CaО  SiО2  Н2О, 

CaО  Fe2О3  6Н2О and other hydrates and oxides. 

Carbon was dominated in all sample’s regions, which, 

in essence, is responsible for all physico-chemical prop-

erties of studied peats. 
 

 
 

Fig. 2 – Distribution of chemical elements in various parts of 

the sample  
 

In line with earlier data [3, 4] the condition 

Eb  Einter ≥ Ekin > Ed must be supplemented with the 

maximum energy of the surface tension Es, which cor-

responds to nano-size of structural components that 

form the fractal branches starting from 5 nm according 

to data of AFM, SEM, and small-angle X-ray scattering 

(SAXSeesmc2, Anton Paar): Es > Eb > Einter ≥ Ekin > Ed. 

This inference is in line with the results of Raman 

Scattering (RS) and fluorescent microscope (FM) ob-

tained with microspectrometer, which was integrated 

with AFM, by mapping technique (Fig. 3a-d) at excita-

tion on   473 nm. It is seen a dramatic difference 

between FM and RS mapped images: (Fig. 3a) is char-

acterized by finer micro- and nanostructure even com-

pared to AFM image in an equal scan field –

 30  30 m (Fig. 1c). Comparison of FM and RS imag-

es indicates that fractal branches were formed by 

nano-particles of significantly lower size. Comparison 

of intensity of RS lines by the base and at branches, 

according to RS images on line 1420 nm (Fig. 3b), is 

indicative of its reduction by several-fold along with 

broadening. It is in this region that the reduction of 

particle size takes place with consideration for the Hei-

senberg uncertainty principle ΔEΔt  ħ. The same re-

sult was found earlier [4] from comparison of rotational 

oscillations amplitudes (See Fig. 3 [4]) in different 

points (at the branch and stem) of fractals. So the lines 

in RS spectra become wider and their intensity de-

creases and shift to low-frequency region appears. 
 

  

  

Fig. 3 – Mapped images of fractal branches according to data 

of FM and RS for an initial (a and b) and photoactivated with 

H2O2 peat sample (c and d) 
 

The photoactivation of peat colloidal system con-

ducted with diluted to 3 % H2O2 made it possible to 

obtain more contrast images of fractal branches both in 

FM and RS. Further concentration increase led to the 

decomposition of metal-bearing mineral inclusions and 

made FM image poorer. The increase in intensity of RS 

and FM at external parts of branches was possibly due 

to carrying out into these regions of larger nano-

particles after processing with H2O2. Comparison of 

elemental distribution data (Fig. 2) with RS and FM 

mapped images suggests that nano-particles of metal 

oxides (Al2O3 and oxides of other transitional metals in 

dramatically lower contents) may be accumulated at ex-

ternal parts of fractal branches. The enhancement of FM 

contrast may be due to interband transitions at radiative 

recombination of excited electrons in d band. This is also 

attested by the absence a reasonable structural contrast 

at excitation of   352 nm and its complete absence at 

  785 nm, corresponding to lower quantum excitation 

energy. Seen in Fig. 3a, b abrupt change in contrast of FM 

and RS images (from black to the most bright by the basis 

of fractal) indicates dramatically greater sizes of nano-

particles in this region. Correlation of RS and FM images 

with elemental distribution in various parts of fractal 

formations is inversely dependent on atomic mass: ~ 1/. 

Forces acting when structuration of colloidal system 

from a drop takes place are the following: capillary, of 

diffusion, of internal friction, of interphase interaction 

and Van-der-Waals forces (the Lenard-Jones potential 

~ 0.1 eV). Then the equation describing the drop surface 

may be written in the form: у  h0 – kT – vt. Here h0 is 

the maximum drop’s thickness, k  tg ,  is the inclina-

tion angle of the wedge “air-liquid-substrate”, v is the 

velocity of the liquid free surface shift. 

a 
b 

c 
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To consider diffusion and evaporation processes in 

this system as basic ones. To determine the dominant 

mechanism that brings about transition of colloidal 

particles to the drop’s edges with consideration for its 

surface equation y according to [2] calculate the dimen-

sionless parameter: d  k2DR / (h0)2. To evaluate d con-

sider that the diffusion component depends on the drop 

radius (transition of nano-particles from the center to 

edges R  3 mm), the value of the angle α at the drop 

edge measuring several degrees (k  tg   0.1 and the 

diffusion coefficient D was taken for water  

(2.4  10 – 9 m2/s) and water solution of a carbon com-

pound (1.02  10 – 9 m2/s). Denominator is determined 

by evaporation whose value is dependent on the veloci-

ty of motion of the liquid edge to the center at evapora-

tion: v  L/t, where L is drop diameter, t is evaporation 

time, h0  0.5 mm. In this case the value of d turns out 

to be significantly lower than 1, supporting the possible 

formation of structures at the drop edge due to the dif-

fusion mechanism. Following the same procedure one 

can obtain and the conditions of structure formation in 

other regions: at the fractal – due to capillary, and at 

the fractal branches – fractalization mechanisms, 

when d  1 и d  1, respectively. 

The role of capillary mechanism can be evaluated 

by the value of the Bond number that is equal to the 

ratio of Rayleigh’s and Marangoni’s numbers: 

КB = gh0
4/. Here g is gravitational acceleration,  is 

water density,  temperature conductivity, h0 is the 

layer thickness and  is surface tension of the medium. 

Let us consider water as the basic medium and take  

and  for it. Take into consideration that fractals begin 

form at the last stage of evaporation, when the incom-

ing energy is maximal and the colloidal system turns 

dramatically non-equilibrium.  

Then h0 becomes comparable with nano-particles 

sizes h0 = d  5  70 nm, and the value of  highly grows: 

 = Es / S, since S = d 2 for nano-particles decreases and 

surface energy increases. Under these conditions KB 

becomes considerably lower than 1, corresponding 

dominant in this region capillary forces that are re-

sponsible for the fractal formation. 

For the appearance of self-organization non-

equilibrium is needed which in the present method 

(wedge-like dehydration) is afforded by only evapora-

tion. Equation of motion of colloidal particles is deter-

mined in terms of the resultant of all forces: 

mdx/dt = Fi, whose solution must describe the distribu-

tion of particles. However, the existence of many pa-

rameters (viscosity, surface tension, etc.) that deter-

mine the forces hampers the solution of dynamical 

problem. To analyze the interaction in the studied 

mixed organic and inorganic system, following [1], con-

sider potential energy that includes both physical and 

chemical sorption. The resulting dependence of interac-

tion energy on the interparticle distance is character-

ized by two minima, namely, the first is due to covalent 

and ionic intra-atomic bonds, whereas the physical 

sorption occurs at interatomic distances greater than 

0.3 nm. It is obviously that the boundary region 

(Fig. 1a) is formed due to chemical sorption, and the 

second minimum corresponds to the region of fractal 

formations (Fig. 1c) where nano-particles are struc-

tured having lesser size as shown earlier. The maxi-

mum of negative attraction energy corresponds to an 

unstable equilibration state. Nonetheless, this may 

lead to an association of particles of various sizes, 

which is objectively observed (Fig. 1b). Comparison of 

observed confocal and AFM images given in Fig. 1a-c 

considering inferences [2] makes it possible to associ-

ate their formation from the colloidal system with the 

following mechanisms: viscous – (Fig. 1a), capillary –

 (Fig. 1b), and fractalization – (Fig. 1c). 

 

3. CONCLUSIONS 
 

Thus, in nano-structural studies of natural colloidal 

systems the conditions of appearance of self-organized 

phenomena have been determined, and also ranges of 

operation of diffusion, capillary, and fractalization 

mechanisms have been found. 
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