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We have synthesized asymmetric di- and triblock copolymers containing chemically complementary 

blocks of poly(acrylic acid) and methoxypoly(ethylene oxide) (PAAc-b-MOPEO) or poly(ethylene oxide) 

(PAAc-b-PEO-b-PAAc) using a template radical block copolymerization process. At low pH, polyacid blocks 

of these copolymers were protonated and formed the intramolecular polycomplexes (IntraPCs) with 

MOPEO or PEO blocks. Due to both the intramolecular complex formation and hydrophobic interactions 

between non-polar bound segments of the blocks, an intensive micellization in copolymer solutions at low 

pH took place. Aqueous copolymer solutions were used as nanocontainers for encapsulation of poorly solu-

ble vitamin E and as nanoreactors for the silver nanoclusters/nanoparticles formation.  
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1. INTRODUCTION 
 

Block copolymers with pH-sensitive polyacid blocks 

have attracted considerable attention due to their capa-

bility of reversibly changing its conformation and physi-

cochemical properties in dependence on the solution pH 

[1,2]. There are only several studies devoted to the micel-

lization process of similar pH-sensitive block copolymers, 

which ones considered the effect of polymeric structure, 

the solution pH and ionic strength on micellar parame-

ters [2]. We reported recently that the double hydrophilic 

block copolymers with the system of cooperative hydro-

gen bonds between chemically complementary blocks 

formed stable micelles in aqueous medium [3,4]. These 

micelles contained hydrophobic “core” with H-bonded 

segments of interacting blocks and hydrophilic “corona” 

with free (unbound) segments of longer blocks. The given 

micellar structures have attracted a considerable atten-

tion due to their possible applications as different tem-

plates, drug delivery systems, nanoreactors, components 

of membranes etc [2, 3, 5]. 

In the present work, we investigated a self-

assembly of di- and triblock copolymers based on chem-

ically complementary poly(acrylic acid) and methoxy-

poly(ethylene oxide) or poly(ethylene oxide) in aqueous 

medium as a function of the solution pH. The capability 

of the given copolymers to connect poorly soluble vita-

min E and to act as nanoreactor for the silver nanoclus-

ters/nanoparticles formation is studied too. 

 

2. EXPERIMENTAL SECTION 
 

2.1 Materials and syntheses 
 

In order to synthesize the PAAc-b-MOPEO diblock 

copolymers (DBCs) and PAAc-b-PEO-b-PAAc triblock 

copolymer (TBC), we used methoxypoly(ethylene glycol) 

(MOPEG) with Mn=5.3 kDa and acrylic acid (AAc) from 

“Fluka” (USA) and also poly(ethylene glycol) (PEG) 

with Mn=6 kDa and cerium ammonium nitrate (initia-

tor) from “Aldrich” (USA). Hydroxyl groups of 

MOPEG/PEG were activated with CeIV ions in the 

block copolymerization process [3]. The reagents were 

mixed in the deionized water and inert atmosphere at 

25 C for 24 h. The molar ratio [CeIV]/[-OH]=1 was con-

stant in all the syntheses but the monomer concentra-

tion was varied from 0.5 to 2.0 molAAc/base-

molMOPEG(PEG). The sediments of DBCs and TBC in H-

form were rewashed by the deionized water after syn-

theses and transformed to Na-form by dissolution in 

water with sodium hydroxide.  

Chemical structure and molecular parameters of 

the synthesized block copolymers were characterized by 

NMR spectroscopy as in the study [6] (Table 1). Thus, a 

series of DBCs with different length of both the blocks 

and one TBC sample were obtained. 
 

Table 1 – Molecular parameters of block copolymers 
 

Sample 
MnMOPEO/PEO 

kDa 

MnPANa 

kDa 

МnDBC/TBC
a) 

kDa 

nb) 

DBC1 

DBC2 

DBC3 

TBC 

5.3 

5.3 

5.3 

6.0 

12.1 

19.8 

23.1 

4.2 

17.4 

25.1 

28.3 

14.4 

129/120 

210/120 

245/120 

52/136 
a) MnDBC=MnMOPEO+MnPANa, MnTBC=MnPEO+2 MnPANa. 
b) The ratio between units of PANa and MOPEO/PEO. 

 

Vitamin E is a major lipid-soluble non-enzymatic 

antioxidant. We have synthesized and applied α-

Tocopherol acetate with the molecular structure (1) as 

a stable vitamin E derivative.  
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(1) 

Syntheses of silver nanoparticles were carried out 

in DBC3 aqueous solutions by the addition of sodium 

borohydride (from China) as a reducer to AgNO3/DBC3 

blends (СDBC=1 kg m-3) at a molar ratio of [Ag+]/[COO-

]=0.1. The excess of NaBH4 was necessary to favor the 

formation of monodispersed Ag-nanoparticles through a 

fast nucleation process [7]. This Red/Ox process could 

be described by the (2) stochiometric equation: 

 

8Ag+ + BH4
 + 8OH  = 8Ag + H2BO3

 + 5H2O (2) 
 

In our experiments, the excess of NaBH4 with respect 

to Ag+ ions was 8-80 times. 

 

2.2 Characterization  
 

We studied the copolymer micellization using Vis 

spectroscopy, photography and static light scattering 

(SLS). The optical density (tubidity) of DBC and TBC 

solutions at different рН was measured by a Сary 50 

Scan UV-Visible Spectrophotometer from “Varian” 

(USA) at  = 500 nm. The critical micellization concen-

tration (CMC) at pH = 2.5 for the block copolymers 

with different relative length of the blocks was deter-

mined by SLS method. For this purpose, a modernized 

instrument FPS-3 (Russia) contained a light-emitting 

diode (  = 520 nm) from “Kingbright”, an ADC-CPU™ 

controller from “Insoftus” (Ukraine) and the computer 

program WINRECORDER was used. The values of pH 

in copolymer solutions and the dissociation degrees ( ) 

of carboxylic groups of polyacid blocks were found from 

the data of potentiometric titration. The titration was 

performed with 0.2 N HCl in a thermostatted cell in 

argon current at Т=25 C using a 1-160 M pH-meter 

(Belarus) calibrated with standard buffer solutions. 

We obtained the blends of VE with DBCs or TBC by 

the addition of a small volume of VE ethanol solution to 

a large volume of the copolymer aqueous solution with 

a certain pH. The blends were studied by photography, 

potentiometric titration, UV-Vis spectroscopy. The en-

capsulation of VE by the copolymer micelles was quan-

titized by UV-Vis spectroscopy.  

UV-Vis spectra of the mixtures AgNO3/DBC3 after 

NaBH4 addition were recorded in the 200-1000 nm re-

gion using a Сary 50 Scan UV-Visible Spectrophotome-

ter from “Varian” (USA). 

 

3. RESULTS AND DISCUSSION  
 

It is well known that amphiphilic block copolymers 

form different micellar or vesicular structures in dilute 

solutions of the solvents, which are selective for one of 

the blocks [5]. Micelles of the block copolymers with 

chemically complementary components, which form the 

intramolecular polycomplexes (IntraPCs), would be 

essentially differing from those characteristic for ordi-

nary amphiphilic copolymers of a block type.  

 

3.1 Micellization of DBCs and TBC in water 
 

The template character of the block copolymeriza-

tion of PAAc with MOPEG or PEG, which was estab-

lished earlier [6], confirmed the formation of intramo-

lecular polycomplexes (IntraPCs) in DBC and TBC 

macromolecules in H-form. Micellization of these copol-

ymers in acidic aqueous solutions (pH ≤ 3) developed 

because of: i) hydrogen bonding of MOPEO/PEO and 

protomated PAAc blocks and ii) hydrophobic segrega-

tion of non-polar bound parts of the blocks in water 

medium. It is accompanied by the appearance of a sig-

nificant turbidity in the copolymer solutions (Fig. 1). At 

the same time, the IntraPC formation and micellization 

were impossible in the case of fully deprotonated DBCs 

and TBC in Na-form. Thus, at pH>3 the micelle de-

struction, which was initiated by the H-bond ruining in 

IntraPCs, took place. 
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Fig. 1 –  (а) The tubidity of the copolymer solutions at differ-

ent рН for DBC1 -1, DBC2 -2 and TBC -3; (b) photos of DBC1 
at different рН; С=1 kg m-3, λ = 500 nm  

 

The CMC values and the Gibbs free micellization 

energies calculated by the relation: G =RT lnCMC [8] 

are represented in Table 2. The raise in CMCs and re-

duction in - G  values indicated the enhance in a mi-

cellar stability with growth of DBC asymmetry. One 

could be assumed that DBC1 macromolecules formed 

spherical “crew-cut” micelles [8] comprised relatively 

large hydrophobic “core” with H-bonded segments of 

both the blocks and a short “corona” with free segments 

of PAAc blocks (Fig. 2 a). 
  

Table 2 – Parameters of the micellization process 
 

Sample 
CMC 106, 

mol dm-3 

- G , 

kJ mol-1 

n 

DBC1 

DBC2 

TBC 

4.24 

6.33 

2.78 

30.65 

29.66 

31.7 

129/120 

210/120 

52/136 
 

An alternative micellar structure would be attributed 

to DBC2, which contained longer PAAc blocks (Fig. 2 

b). In this case, the formation of “hairy-type” micelles 

with relatively small hydrophobic “core” and developed 

“corona” would be expected [5]. 

The smallest CMC and largest - G  values were 

characteristic for TBC sample (Table 2). In this case, 

the most intense micellization developed due to insolu-

bility of two “tail” short PAAc blocks, which were H-

bonded with longer central PEO block. Therefore, the 

appearance of the “flower-like” micelles (Fig. 2 c) would 

be waiting [9]. Insoluble “tails” of the bound PAAc and 

PEO segments would form a large micellar “core”, 
while soluble “loops” of free PEO segments would be 

concentrating in a “corona”.  
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“Flower-like” mi-

celles of TBC 
 

Fig. 2 – Micellar structures of the copolymers at pH ≤ 3 

 

3.2 Encapsulation of vitamin E  
 

Taking into account a poor solubility of VE in water, 

we dissolved it in a small volume of ethanol and blended 

with aqueous copolymer solutions. The interaction of VE 

with DBCs and TBC in the mixed (H2O/EtOH = 95/5 v/v) 

solvent at the ratio  = 0.1 molVE/ base-molPAAc/PANa and 

the contact time ~24 h resulted in the appearance of a 

solution turbidity in the region of pH = 3 9 and a phase 

separation at pH 3. Thus, the development of the micel-

lization process in the first pH region and its intensifica-

tion in the second one were observed.  

We characterized VE encapsulation by DBC and TBC 

micelles at pH = 2.5 by UV spectroscopy using a phase 

separation in the system. Thus, the precipitates with 

micellar phase and encapsulated VE were separated by a 

centrifugation (ω = 6000 rot/min) and supernatants in-

cluded unbound VE were obtained and studied. UV spec-

tra of the supernatants and initial VE solutions are 

shown in Fig. 3. The intense absorption bands near 260 

and 300 nm in the spectra of a pure VE (Fig. 3 a, b, 

curves 1) corresponded to   * and n  * electronic 

transitions [10]. Significantly less intensity of these 

bands was observed in the spectra of supernatants (Fig. 

3 a, b, curves 2). 

The degree of VE encapsulation was calculated as 

the ratio between the integral intensities of the given 

absorption bands in the spectra of supernatant and 

initial pure VE. The results are represented in Table 3. 
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Fig. 3 – UV spectra of pure VE –1 and supernatants -2 for the 

blends: (a) DBC1 + VE and (b) TBC + VE. CDBC/TBC = 1 kg m-3;  

 = 0.1 molVE/base-molPAAc; CVE=0.08 kg m-3 (a) and 0.09 kg m-3 (b) 

 

Table 3 – VE encapsulation by copolymer micelles 
 

System CVE initial, 

kg m-3 

CVE supernatant, 

kg m-3 

XVE a), 

wt % 

DBC1+VЕ 0.250 0.003 99.0 

TBC+VE 0.280 0.002 99.4 
a) The degree of VE encapsulation. 

 

It is seen that the micelles of both the copolymers en-

capsulated practically all VE at the selected its concen-

tration and  ratio. 

3.3 Formation of silver nanoparticles  
 

A color of the reaction mixtures after chemical re-

duction of silver ions in DBC solution with different 

solution pH by NaBH4 (at [NaBH4]/[Ag+]=80) gradually 

changed. So, Ag+/DBC mixture with pH=9.6 showed a 

yellow color, while analogous mixture with pH=2.5 

demonstrated a blue one. Nano-scaled metal particles 

exhibit an intense band of the surface plasmon reso-

nance, which is conditioned by the movement of con-

ducting electrons at the particle surface [7]. In our case 

the absorption band with max near 400 nm character-

izes the surface plasmon resonance of Ag-nanoparticles 

[7,11]. Typical plasmon resonance bands, which were 

recorded during the process of Ag-nanoparticle synthe-

sis in DBC3 solutions, are shown in Figure 4 a. We 

observed a steady increase in the intensity of the ab-

sorption band with λmax=381 nm at earlier reaction 

stages and further decrease in the band intensity and 

its red shift in 27-29 nm (up to λmax =408-410 nm) at 

longer time. According to the Mie’s theory, [7] the ob-

served plasmon resonance band would correspond to 

the particles, whose size is less than 30 nm. 
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Fig. 4 – Absorption spectra of (a) Ag-nanoparticles obtained in 
DBC3 solution (pH=9.6) in different time after reduction be-

ginning: □=5, ○=15, ▲=35, =120, ∆=270, ■=5760, ◊=14400 

min; (b) Ag-nanoclusters obtained in DBC3 solution (pH~6) in 

different time after reduction beginning: ○=5, ●=141, =1440, 

▲=5760 min; СDBC=1 kg m-3, СAgNO3=1.4 10-2 kg m-3, 

[NаВН4]/[Ag+]=80. 
 

The absorption bands near 400 nm were practically 

absent in spectra of reaction mixtures Ag+/DBC at the 

pH~6 (Fig.4 b). Instead them, the absorption bands in 

the region of  > 800 nm appeared. In fact, the for-

mation of so-called “blue silver” took place in these cas-

es. According to the literature data, [11] this result 

could be interpreted by the formation of very long se-

quences of the bound silver nanoclusters (and Ag+ ions) 

along polyacid blocks of DBC. From such point of view 

the “blue silver” is a product of the incomplete reduc-

tion of silver ions by sodium borohydride. Therefore, 

the chemical reduction of Ag+ ions in DBC solutions at 

pH ~ 6 (unlike to pH~9) led to formation of silver 

nanoclusters and their complexes with polyacid blocks. 

The absence of any sediment in the reaction mixtures 

denoted the presence of fully stable silver nanoparti-

cle/nanocluster dispersions. The main task of the last 

experimental series was to carry out the silver ion re-

duction in micellar structures of the copolymers. In 

order to solve this problem, we have decreased the mo-

lar ratio of [NаВН4]/[Ag+] in the reaction mixture in 10 

times (up to 8). In this case the solution pH = 3 was not 

changed. Results of these tests are represented in Fig-

ure 5 b. 
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Fig. 5 – Absorption spectra of (a) Ag+/DBC3 micellar solution 

(pH~3) without NаВН4 and (b) in 5 60 min after NаВН4 addition; 

СPAAc=1 kg m-3, СAgNO3=1.4 10-2 kg m-3. [NаВН4]/[Ag+] = 8 
 

At once after NаВН4 addition, relatively broad ab-

sorption band with max = 431-433 nm arose in the 

Ag+/DBC3 micellar solutions due to formation of silver 

nanoparticles. The intensity of this band was practical-

ly unchanged during some times (~24 h) and then dis-

appeared because of the microphase separation in the 

system. Evidently, that in DBC micellar solutions at 

pH~3 a very quick development of the reduction pro-

cess and formation of Ag-nanoparticles with larger size 

(than in DBC solutions at pH~9) took place. 

 

4. CONCLUSION 
 

The given block copolymers with interacting PAAc 

and MOPEO (PEO) blocks were stimuli responsive copol-

ymers. It was shown that their behavior in aqueous solu-

tions strongly depended on the ionization degree of PAAc 

blocks. At low pH PAAc blocks were protonated and con-

nected with chemically complementary MOPEO (PEO) 

blocks. Due to this, block copolymer macromolecules self-

assembled into the micelles of different construction (with 

different nature of stabilizing “corona”) in dependence on 

relative length of nonionic and polyacid blocks. 

The ability of DBC and TBC micelles to connect 

poorly soluble vitamin E was established. DBC and 

TBC matrixes demonstrated higher VE encapsulation 

efficiencies up to 100%. 

Highly stable Ag nanoparticle dispersions were ob-

tained with an excess of sodium borohydride 

([NaBH4]/[Аg+] = 8-80) in aqueous solutions of fully 

deprotonated DBC (pH = 9). Ag nanoparticle formation 

in DBC micelles (pH = 3) under [NaBH4]/[Аg+] = 8 was 

established. It was revealed the partial reduction of Ag+ 

to the nanoclusters and their further stabilization by 

partially protonated DBC (pH =6).  

Thus, the capabilities of given block copolymer ma-

trices to act as the templates for encapsulation of fat-

soluble VE and for silver nanoclusters/nanoparticles 

formation were shown. 
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