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Resin-gel synthesis has the ability to become a powerful technique for the synthesis of multi-phase na-

noparticles. This study aimed to take further steps into investigating the mechanism of the resin-gel syn-

thesis based on phase differentiation of titania, in the hope to describe optimal synthetic conditions for de-

sired polymorph production with tailored particle size. Solvent, polymer chain length, heating rate and the 

use of citric acid has been varied previously. The results obtained suggested that the working theory of the 

resin-gel synthesis may be incorrect as there was significant phase differentiation based on the solvent 

used. This work explored the effects of the stoichiometric ratio of PEG to TiCl4 and the effect of heating 

rates to clarify the reaction mechanism. 
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1. INTRODUCTION 
 

The resin-gel synthesis technique is a modification 

of the Pechini method for the fabrication of nano-

materials. It involves the addition of a long chain pol-

ymer to a stable solution of metal ions within a solvent 

matrix to form a polymeric resin [1]. It has been shown 

in previous research that the choice of solvent plays a 

role in determining the eventual products of the syn-

thesis, even though the solvent is not present during 

the final burning stage when the particles are formed. 

The choice of ethanol leads almost exclusively to the 

formation of anatase, while using water with nitric acid 

leads to a mix of anatase and rutile dependent on the 

molecular weight of the polymer that is used. In addi-

tion it has been determined that the addition of citric 

acid to the solvent matrix leads to the almost exclusive 

formation of anatase. 

The accepted working theory has been that the metal 

ions coordinate to the polymer initially and, following 

complete solvent evaporation, are then agglomerated into 

nanoparticles during flame synthesis of the reaction mix-

ture [1]. Previous work we have performed has shown 

that this may not be the correct mechanism and that the 

formation of local clusters of metal ions that are co-

ordinated by the solvent and any other species present in 

the liquid medium followed by coordination of these clus-

ters to the polymer is a more likely mechanism. 

Although relatively unexplored, resin-gel synthesis 

affords the opportunity to synthesize a multi-phase ma-

terial using a single reaction step. This is in contrast to 

most other synthesis methods that invariably produce 

the phase corresponding to a global energy minimum. 

Hence, it has the potential to become a much sought 

after, powerful technique for the fabrication of a wide 

range of multi-phase nanomaterials.  

Titanium dioxide is a well understood material. 

Phase transition temperatures, abundance, stability 

and many other properties have been extensively stud-

ied and reported [2]. In addition, its nanoparticulate 

form has found numerous applications in the field of 

photocatalysis, photovoltaics and sensors [3 -5]. The 

most common and stable phase of titania is rutile fol-

lowed by anatase and then brookite [2]. Numerous lit-

erature reports state that under the correct conditions 

of temperature and/or pressure, anatase and brookite 

will irreversibly convert to rutile – the thermodynami-

cally stable polymorph [6 – 9]. This conversion property 

of TiO2 makes it an ideal candidate on which to model 

the resin-gel synthesis technique to produce multi-

phase titania in a single sample. 

The primary aim of this study was to further ad-

vancements into understanding the mechanism of op-

eration of the resin-gel synthesis. This task was under-

taken by considering the effect of changing some of the 

parameters that influence the resin-gel synthesis 

method. Using a TiCl4 precursor, the heating rate and 

the stoichiometric amount of polymer relative to the 

amount of TiCl4 at several PEG chain lengths was ex-

plored. The data generated from these variations al-

lowed for the refinement of the new, proposed mecha-

nism of resin-gel synthesis. 

 

2. EXPERIMENTAL PROCEDURE 
 

2.1 The effect of PEG stoichiometry 
 

To accommodate for the large quantities of PEG to 

be included in the reaction mixture, two batch solutions 

of TiCl4 in water were prepared. The first involved the 

addition of 6.0 ml of TiCl4 (0.055 mol) to excess distilled 

water (144 ml). Concentrated nitric acid (12 ml) was 

then added to aid solubility of TiCl4 in water. The re-

sulting solution was split into six equal parts and half 

the stoichiometric quantity of PEG of different chain 

lengths was added to each such that the mole ratio of 

TiCl4:PEG equalled 1:0.5. The actual quantities of PEG 

added to each solution are given in Table 1.  
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For the second batch solution*, 1.5 ml of TiCl4 

(0.014 mol) was added to 36 ml excess distilled water 

followed by 3 ml of concentrated nitric acid. After the 

solution had been split into 3 equal parts, half the stoi-

chiometric amount of PEG was added to each solution 

as given in table 1. 
 

Table 1 – Amounts of PEG of varying molecular weight used 

for synthesis in a 1:0.5 stoichiometric ratio with TiCl4. PEG 

marked with a * came from a second batch. 
 

Average poly-

mer molecular 

weight /g.mol-1 

Theoretical 

amount required for 

stoichiometry /g 

Actual 

amount used 

/g 

200 0.92 0.918 

400 1.84 1.91 

1500 6.885 6.92 

3000 13.77 13.50 

4000 18.20 18.20 

6000 22.22 22.28 

8000 36.72 36.72 

10000* 22.75 22.86 

12000* 27.30 27.30 

20000* 45.50 45.77 
   

For the synthesis of the stoichiometric equivalent 

ratio (TiCl4:PEG in a 1:1 ratio), two batch solutions 

were prepared for the same reason described above. 

For the first batch, TiCl4 (2.5 ml, 0.023 mol) was added 

to 60 ml distilled water and 5 ml of concentrated nitric 

acid was then introduced. The actual amount of poly-

mer added to each solution is given in Table 2.  

The second batch‡ involved the addition of 0.75ml of 

TiCl4 (6.8 mmol) to 18 ml of distilled water followed by 

1.5 ml of concentrated nitric acid. Appropriate amounts 

of different molecular weight PEG were then added to 

the three equally divided solutions (table 2).  

Each mixture mentioned above was stirred and 

heated sufficiently to ensure complete homogeneity; 

and prepared in duplicate to allow for two different 

heating rates prior to fame synthesis. 
 

Table 2 – Amounts of PEG of varying molecular weight used 

for synthesis in a 1:1 stoichiometric ratio with TiCl4. PEG 

marked with ‡ came from a second batch 
 

Average poly-

mer molecular 

weight /g.mol-1 

Theoretical 

amount required for 

stoichiometry /g 

Actual 

amount used 

/g 

200 0.92 0.92 

400 1.84 1.89 

1500 6.885 6.87 

3000 13.77 13.50 

4000 18.20 18.20 

6000 22.22 22.29 

8000 36.72 36.72 

10000‡ 22.75 22.76 

12000‡ 27.29 27.490 

20000‡ 45.48 45.21 

 

2.2 Variation in the heating rate 
 

Following the complete evaporation of excess sol-

vent from each polymer mixture, two different heating 

methods were used to engage flame synthesis of the 

polymer. 

The first method involved the conventional heating 

of the polymer mixture. Each mixture was added into a 

crucible. The crucible was placed in a sand bath (so as 

to ensure uniform heating) and heated until each mix-

ture had reached its auto-ignition point. A flame source 

was then used to ignite each sample. The black ap-

pearance of the samples suggested that a carbon coat-

ing had been deposited onto the nanoparticles, hence 

each sample was allowed to cool before being calcined 

in a muffle furnace at 773 K for one hour. 

The second heating method involved heating a cast 

iron vessel to 1173 K in a muffle furnace. Following 

complete evaporation of excess solvent from each mix-

ture, the molten polymer gel was added to the vessel. 

As was expected, due to the high temperatures, the 

polymer samples spontaneously ignited on account of 

them passing their flash points. The excessive temper-

atures also promoted the calcination of each sample 

immediately following polymer pyrolysis.  

 

2.3 Characterization and Analysis  
 

PXRD and TEM were used as the main forms of 

characterization techniques to deduce the presence of 

the different phases and particle sizes of titania. 

A Bruker D2 Phaser diffractometer using Co Kα ra-

diation in conjunction with a 0.6 mm slit and primary 

and secondary soller slits at 2.5°. A LYNXEYE® detec-

tor was used with this diffractometer. Each sample was 

placed on a zero background sample holder and ana-

lysed between 20° and 60° 2θ angles in increments of 

0.026°. TEM analysis was used to confirm the data ob-

tained using XRD. A Tecnai F20 at 200 kV was em-

ployed for this task. 

The Spurr and Myers equation was used to determine 

the mass per cent of anatase and rutile produced in each 

sample synthesised. The equation considers the intensi-

ties of the anatase (101) and rutile (110) peaks and has 

an inherent 5 % error by mass. Particle size analysis was 

performed using the instrumentally corrected Scherrer 

equation with K = 0.91. 

 

3. RESULTS AND DISCUSSION 
 

It should be noted here that crystallite size data was 

only obtained from samples that showed significant 

amounts of either polymorph. Using the current data 

extraction method for crystallite size analysis, a signifi-

cantly non-intense peak was difficult to analyse for crys-

tallite size and phase composition data. 

 

3.1 Conventional heating 
 

Figures 1 and 2 compare the mass per cent of ana-

tase and rutile formed across a range of PEG molecular 

weights at different mole ratios using the conventional 

heating rate. Comparing these figures, it is apparent 

that the ratio of metal ions to PEG had a significant 

bearing on the phase that was produced. When half as 

much PEG was employed, the amount of rutile appeared 

to increase across the range of PEG chain lengths. How-

ever, when the mole ratio of PEG to Ti ions was the 

same, the amount of rutile decreased as a function of 

increasing polymer chain length. This effect may be ex-

plained in terms of a protecting effect inferred by the 

polymer on the forming nanoparticle. If this is thought 
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to be true then the greater the amount of polymer within 

any sample, the greater the protecting effect will be and 

the less likely anatase will convert to rutile. 
 

 
 

Fig. 1 – Variation of anatase and rutile mass per cent and 
particle size formed as function of increasing PEG molecular 

weight in a Ti:PEG 1:0.5 conventional heat synthesis  
 

The amount of anatase formed does not exhibit a 

similar trend. In figure 2, it is clear that the amount of 

anatase formed across the range of PEG molecular 

weights first increases then decreases. Longer chain 

lengths promote the formation of anatase.  
 

 
 

Fig. 2 – Variation of anatase and rutile mass per cent and 

particle size formed as function of increasing PEG molecular 
weight in a Ti:PEG 1:1 conventional heat synthesis 
 

The relationship between particle size and the 

amount of each phase formed was interesting. For both 

anatase and rutile, larger particles were formed when 

the amount of that particular phase was lower for a 

given sample. This inverse relationship may serve as a 

means to refine a component of the mechanism of the 

resin-gel synthesis in the following manner: it is as-

sumed that during the burn process, reaction chambers 

are formed that contain the developing nanoparticle. 

These chambers are governed by the size of the poly-

mer chain post flame induced scission. The size of the 

chamber will govern the size of the nanoparticles. If 

there is very little space, only anatase will form. Given 

the small, cubic nature of the particles (as witnessed in 

HRTEM – figure 3) it is possible that these anatase 

particles will form in great numbers. 

This will result in large amounts of small anatase par-

ticles being formed. If however, the reaction chamber is 

larger, anatase will convert to rutile nanorods (figure 

4A). If the chamber is bigger still, the formed nanorods 

will cluster together around a single crystal axis into a 

ball (figure 4B). Therefore, large rutile particles are 

formed in small numbers. 

 
 

Fig. 3 – Anatase nanoparticles with approximate cubic mor-
phology from short-chain PEG synthesis  

 

 
 

Fig. 4 – A) Rutile particles forming nanorods. B) Rutile nano-
rods clustering into a nanoball 

 

As was expected, particle size increased dramatical-

ly post-calcination (figures 5 and 6). This is due to par-

ticles sintering together into larger clusters. Calcina-

tion also had the effect of converting some of the 

formed anatase particles into rutile. This result was 

also expected. 
 

 
 

Fig. 5 – Variation of anatase and rutile mass per cent and parti-

cle size formed as a function of increasing PEG molecular weight 
in a Ti:PEG 1:0.5 conventional synthesis (post-calcination) 

 

3.2 Rapid heating 
 

Figures 7 and 8 depict the changes in mass per-

centage and particle sizes formed during the rapid heat 

synthesis at two different metal ion:PEG ratios.  

Figure 7 shows an interesting trend with regard to 

the amount of rutile formed as a function of increasing 

molecular weight. There appears to be an oscillating 

trend whereby some chain lengths produce more rutile 
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and others less. It is thought that scission of the chain 

occurs at specific points for different polymers depending 

on the length of the chain used in the synthesis.  
 

 
 

Fig. 6 – Variation of anatase and rutile mass per cent and 

particle size formed as function of increasing PEG molecular 

weight in a Ti:PEG 1:1 synthesis (post-calcination) 
 

The inverse trend of particle size and the mass per-

centage of each phase formed was again observed and 

pronounced for rutile. Figure 7 also shows a clear trend 

of the size of each polymorph as a function of polymer 

chain length. Figures 7 and 8 show that rutile particles 

were larger than anatase particles. This, together with 

the oscillating trend observed for rutile may be ration-

alised in terms of the reaction chambers mentioned 

above. The clear trends observed from figure 7 are not 

witnessed in figure 8. While the inverse relationship 

between the amount of rutile and particle size formed 

was maintained, the oscillating nature described above 

was non-existant. From figure 8, the 8000 g/mol PEG 

produced a small amount of rutile in comparison to the 

other chain lengths. 
 

 
 

Fig. 7 – Variation of anatase and rutile mass per cent and 

particle size formed as a function of increasing PEG molecular 

weight in a Ti:PEG 1:0.5 rapid heat synthesis 

The differences observed across the stoichiometric 

ratios may be attributed to the polymer affording pro-

tection to the forming nanoparticle, as mentioned.  

Comparing figures 1 and 7, across the series of dif-

ferent polymer chain lengths, for the Ti:PEG in a 1:0.5 

ratio, rutile formation is enhanced when the samples are 

burned according to the conventional method. A plausi-

ble explanation for this observation is that if the samples 

were heated rapidly, the formed anatase particles would 

not have sufficient time to cluster together and form 

rutile. If, however, they were heated slowly, the forming 

anatase would have sufficient time to react with other 

anatase particles, thereby forming larger amounts of 

rutile. A similar trend could not be obtained at the high-

er stoichiometric ratio (comparing figures 2 and 8). 
 

 
 

Fig. 8 – Variation of anatase and rutile mass per cent and 

particle size formed as a function of increasing PEG molecular 

weight in a Ti:PEG 1:1 rapid heat synthesis 

 

4. CONCLUSION 
 

The molecular weight and relative molar amount of 

PEG in the reaction mixture affect phase and particle 

size formation. The results indicate that the presence 

of large amounts of polymer protect the forming ana-

tase particle, inhibiting its conversion to rutile. The 

reproducible trend of the inverse relationship between 

particle size and the mass percent of a respective phase 

lends support to the formation of reaction chambers, 

within which anatase forms and is allowed to convert 

to rutile in different ways, depending on the size of the 

chamber. A rapid ignition of the mixtures does not pro-

vide sufficient time for the conversion of anatase to 

rutile and so lends itself to the formation of anatase. 

No explanation is yet available for the large amount of 

rutile formed when a high mole ratio of PEG was em-

ployed and the ignition performed at a rapid rate. The 

sometimes random variation in rutile ratios is a factor 

that is still under investigation. Further work is also 

continuing to determine the crystallite size:rutile ratio 

relationship with respect to synthesis conditions. 
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