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Preparation procedure of organosoluble stoichiometric polycomplex based on cationic polyelectrolyte 

and anionic surfactant has been described. It was shown the formation of mixed monolayers consisting of 

polyelectrolyte-surfactant complex and dye molecules at the water-air interface. Assembling conditions of 

fluorescent nanosized solid Langmuir-Blodgett films based on polycomplex and dye Nile Red were defined 

and the spectral-luminescent properties of obtained films were studied. Absorption and fluorescence spec-

tra of mixed Langmuir-Blodgett films revealed that electrostatic interaction between polycomplex and dye 

molecules is responsible for formation of dimers.  
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1. INTRODUCTION 
 

Polyelectrolyte-surfactant complexes are a new class of 

materials that possess supramolecular structure at the 

molecular level. Preparation, conformational and physical-

chemical properties of polyelectrolyte-surfactant complex-

es have been reviewed in [1, 2]. Recently organosoluble 

stoichiometric polyelectrolyte-surfactant complexes at-

tracted much attention of researchers [3-5].  

The unique property of dye Nile Red is that it is widely 

used as an active material for light-emitting diodes and 

lasers [6, 7], in solar energy concentrators [8], sensor of 

the medium polarity [9, 10].  

The Langmuir-Blodgett (LB) technique is one of the ef-

fective tools to design functional nanomaterials. In partic-

ular, the typical LB compatible materials are amphiphilic 

molecules or mixture of non-amphiphilic molecules with 

fatty acids because behavior of non-amphiphilic molecules 

in LB films is similar to their amphiphilic precursors 

[11, 12]. This fact encourages studying of mixed LB films, 

inasmuch as such films can easily be prepared from exist-

ing non-amphiphilic molecules without chemical synthesis 

of amphiphilic luminophores [11-14]. 

Assembling of nanostructured LB films with the help 

of electrostatic interactions has advantages over a time-

consuming and expensive chemical synthesis. The struc-

ture of resulting systems is reversible and stimuli-

responsive to the environment change (e.g., solvent quali-

ty, concentration of components, pH, temperature, etc.) 

[15-17]. Nanostructured materials obtained by using of 

different principles of self-organization and molecular 

recognition serve as a basis for the development of tunable 

nanoporous materials with anisotropic properties, such as 

proton conductivity [18-20]. However, in spite of a great 

number of publications devoted to study of adsorbed films 

and Langmuir monolayers [21, 22] information on fluores-

cent thin solid films assembled with participation of poly-

electrolyte-surfactant polycomplexes and dyes to our best 

knowledge is lacking. 

The main aim of the present paper is to study the fluo-

rescencing behavior of nanosized Langmuir-Blodgett films 

based on polyelectrolyte-surfactant complex and dye Nile 

Red.  

 

2. EXPERIMENTAL 
 

Stoichiometric polyelectolyte-surfactant polycomplex 

was derived from cationic polyelectrolyte – poly(N-

vinylbenzyl-N,N,N-trimethylammonium chloride 

(PVBTMAC) with molecular weight М  2.47·104  and 

anionic surfactant – sodium salt of dodecylbenzenesul-

fonate (DBSS). PVBTMAC and DBSS were purchased 

from Polysciences Inc. (USA) and used without additional 

purification. Dye Nile Red was purchased from Organic 

Intermediates and Dyes Institute (Russia). Structural 

formulas of used compounds are shown in Fig. 1. 
 

 
 

Fig. 1 – Structural formulas of (a) PBTMAC, (b) DBSS and (c) 

Nile Red. 
 

Polycomplex PVBTMAC-DBSS was prepared as fol-

lows: 10 mL aqueous solution of PVBTMAC with concen-

tration С  10 -3 mol/L was preliminarily titrated by aque-
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ous solution of DBSS with concentration С  10 -2 mol/L. 

Inflection point of conductimetric titration curve that 

was equal to 1.24 mL of DBSS was taken as optimal 

amount DBSS that is necessary for full precipitation of 

PVBTMAC. On the basis of specified molar ratio of 

[PVBTMAC] : [DBSS]  1:1.24 mol/mol it was found 

that for quantitative precipitation of 25 mL of polyelec-

trolyte solution with concentration 10 -3 mol/L it is 

needed 31 mL of DBSS solution with concentration 

C  10 -3 mol/L. For preparation of polycomplex as pre-

cipitate an aqueous solution of DBSS was dropwisely 

added to aqueous solution of PVBTMAC during 1 h 

under stirring. After the precipitate was decanted by 

deionized water 5 times and finally centrifuged at 

5.5·103 rpm. Precipitate was then dried in vacuum oven 

at 40 ˚С till the constant mass. The yield of glass pre-

cipitate was equal to 38 %. Prepared polycomplex was 

soluble in ethanol and chloroform.  

The individuality of polycomplex was confirmed by 

absorption spectroscopy 

The properties of monolayers were studied in 

Langmuir-Blodgett through. Behavior of monolayers 

was studied by measuring the dependence of surface 

pressure-specific molecular area (π-А–isotherm). Sur-

face pressure at the air–water interface was registered 

with the help of a Wilhelmy balance that allows to de-

tect the surface tension in the range of 0 to 100 mN/m 

with accuracy equal to 0.1 %. The compression rate of 

the monolayers in the course of measuring of π–A iso-

therm and transferring of monolayer onto solid sub-

strates from quartz glass was 0.02 mm/s.  

The deionized water was cleaned by AquaMax and 

was used as subphase. The resistivity of the deionized 

water was 18.2 МΩ/сm. The surface tension of water 

was equal to 72.8 mN/m at pH  5.6 and temperature 

22 °C. Monolayers were deposited on the subphase sur-

face by spreading of solution. 

 

3. RESULTS AND DISCUSSION 
 

3.1  Charge distribution in the ground electron-

ic state 
 

Distribution of electronic density of studied com-

pounds was investigated by quantum-chemical method 

in the approximation of Pariser-Parr-People, taking 

into account the configuration interactions [24]. The 

calculations showed that the maximum positive charge 

in the ground state of molecule PVBTMAC is concen-

trated on the nitrogen atom. The biggest negative 

charge of surfactant molecules is located on the oxygen 

atoms of sulfonate group. These charges play a major 

role in the formation of polyelectrolyte-surfactant com-

plex [25]. 

For molecules of dye Nile Red in the ground state 

the maximum negative charge is concentrated on the 

oxygen of the carbonyl group C=O. Accordingly, a large 

positive charge is appeared on carbon atom of this 

group. Much smaller negative charge has the nitrogen 

of pyridine ring. On the other hand, this charge is suffi-

ciently large to six-membered ring to have aromatic 

character. Amino nitrogen has a small positive charge, 

and hence its effect on the condensed six-membered 

rings will be minimal. Electrostatic interaction between 

the oxygen of the carbonyl group of the dye molecule 

and the nitrogen atom of polyelectrolyte molecules will 

retain the Nile Red at the water-air interface. 

 

3.2 Spectral-fluorescent properties of Lang-

muir-Blodgett films 
 

Absorption and fluorescence spectra of LB films 

were measured on a Spekol 1500 spectrophotometer 

(Analytic Jena) and a spectrofluorimeter with detection 

in the photon counting mode [13]. The formation of LB 

films from the pure polycomlex was confirmed by 

measuring the electronic absorption spectra of films in 

the UV region. Two absorption bands with the maxima 

at 195 and 225 nm were observed. They are attributed 

to benzene rings containing in the structure of poly-

complex, e.g. PVBTMAC and DBSS. The optical density 

of films increases with increasing of number of layers. 

Absorption and fluorescence spectra of mixed LB 

films of polycomplex and Nile Red are shown in Fig. 2. 

Absorption band of LB film with concentration of dye 

0.2 mol % exhibits the maximum at λmax  590 nm. For 

other LB films two bands in the absorption spectra ap-

pear. The least intense band is located at 590 nm for all 

concentrations of the dye and appeared as a shoulder 

on the absorption curve.  

For dye concentrations of 10 mol. % the maximum 

of more intensive band is observed at 512 nm. It should 

be noted that with increasing of concentration of dye 

molecules in the film the maxima of short-wave absorp-

tion bands are shifted hypsochromically. At the same 

time the maximum at 590 nm does not shift. The exci-

tation of the fluorescence spectrum of mixed LB films 

was performed at two wavelengths – λex  490 and 

λex  590 nm by using of halogen lamp and monochrom-

ator. For all films the maximal intensity of lumines-

cence was obtained at excitation of fluorescence in long 

wavelength wing of absorption spectrum. Maximum of 

the fluorescence spectrum of film with concentration of 

dye 0.2 mol % was observed at 655 nm. Fluorescence 

spectra of films containing 10, 33 and 50 mol % of dye 

molecules are shifted to short wavelength region. The 

maximal intensity corresponds to 648, 645 and 640 nm.  

The fluorescence spectra of films excited at 490 nm 

(concentration of dye 10 and 33 mol % respectively) 

have a maximum at 655 nm. Fluorescence band of film 

containing 50 mol % dye molecules is broadened and 

shifted to the red spectral region with λmax  688 nm. 

Increasing of dye concentration in film leads to quench-

ing of the intensity of fluorescence. The maximal value 

of fluorescence quantum yield for LB films was ob-

tained at 33 mol % dye concentration. 

The spectral behavior of mixed films is well de-

scribed by exciton model of molecular aggregates. Ac-

cording to molecular aggregates theory the spectral 

behavior of mixed films is well described by exciton 

model of molecular aggregates. According to molecular 

aggregates theory [30], the exciton band of dimer con-

sists of two discrete levels 
hS1  and 

lS1 . When dye con-

centration in film is equal to 0.2 mol % the absorption  
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Fig. 2 – Absorption (1 – 4) and fluorescence (1'– 4’ at λex  570 nm) (4’’ at λex  490 nm) spectra of LB films of polycomplex and Nile 

Red at different concentration 
 

of dimers is not observed and the formation of absorp-

tion spectrum of monomer is connected with transition 

0 1S S . The amount of dimers increases with increas-

ing of dye concentration that leads to appearance of 

short-wavelength band of absorption (transition 

0 1
hS S ). 

The monomeric centers preferentially emit at 

excitation 590 nm (transition 0 1S S ) with maximum at 

660 nm. The band corresponding to long-wave 

electronic transition ( 1 0
lS S ) is observed in case of 

excitation at 490 nm. This is evidence of fast 

nonradiative relaxation from the higher 
hS1  to lower 

lS1  

sublevel of the splitted and excited state of dimer 

[30, 31]. 
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