
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATIONS AND PROPERTIES 

Vol. 1 No 1, 01NDLCN01 (3pp) (2012) 

 

 

2304-1862/2012/1(1)01NDLCN01(3) 01NDLCN01-1  2012 Sumy State University 

Computational Strategy for Graphene: Insight from Odd Electrons Correlation 
 

E.F. Sheka* 
 

Peoples’ Friendship University of Russia, 6, Miklukho-Maklay Str., 117198 Moscow, Russia 
 

(Received 15 February 2012; published online 15 August 2012) 

 
The correlation of odd electrons in graphene turns out to be significant so that the species should be 

attributed to correlated ones. This finding profoundly influences the computational strategy addressing it 

to configuration-interaction computational schemes. Owing to serious problems related to the schemes 

realization, a compromise can be suggested by using single-determinant approaches based on either 

Hartree-Fock or Density-Functional Theory in the form of unrestricted open-shell presentation. Both 

computational schemes enable to fix the electron correlation, while only the Hartree-Fock theory suggests 

a set of quantities to be calculated that can quantitatively characterize the electron correlation and can be 

used for a quantitative description of such graphene properties as magnetism, chemical reactivity, and 

mechanical response. The paper presents concepts and algorithms of the unrestricted Hartree-Fock theory 

applied for the consideration of magnetic properties of nanographenes, their chemical modification by the 

example of stepwise hydrogenation, as well as a possible governing the electron correlation by the carbon 

skeleton deformation.  
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1. INTRODUCTION  
 

According to Wikipedia, ‘Graphene is an allotrope of 

carbon, whose structure is one-atom-thick planar 

sheets of sp2-bonded carbon atoms that are densely 

packed in a honeycomb crystal lattice’ [1]. The 

definition clearly exhibits a molecular-crystal duality of 

this extraordinary substance. The peculiar duality is 

embodied in the computational strategy of graphene, as 

well.  On one hand, the solid state microscopic theory of 

quasiparticles in 2D space forms the ground for the 

description of graphene crystal. On the other hand, 

quantum molecular theory creates the image of the 

graphene molecule. However, as earlier, the two 

seemingly different concepts are tightly interconnected 

at computational level. Thus, the solid state 

quasiparticles are usually described in the approach 

based on a unit cell and/or supercell followed with 

periodic boundary conditions; besides, the unit cell is 

described at the molecular theory level. Therefore, the 

latter lays the foundation of both approaches, whilst 

rather differently. It is connected with the different 

origin of the molecular object under study. In the case 

of solid state approach, the cell and/or supercell should 

be chosen as a known crystalline motive. When 

graphene is considered as a molecule, no structural 

restrictions are introduced in advance. In both cases, it 

becomes necessary to understand which molecular 

theory is applicable for the graphene to be studied in 

the best way. The current paper concerns peculiarities 

of the molecular theory of graphene. The latter are 

obviously connected with both the odd-electron origin of 

the graphene electron system and these electrons 

correlation that turns out to play the governing role.  

 

2. ODD ELECTRONS CORRELATION 
 

In spite of formally monatomic crystalline structure 

of graphene, its properties are evidently governed by 

the behaviour of odd electrons of hexagonal benzenoid 

units. The only thing that we know about the behaviour 

for sure is that the interaction between odd electrons is 

weak; nevertheless, how weak is it? Is it enough to 

provide a tight covalent pairing when two electrons 

with different spins occupy the same place in space or, 

oppositely, is it too weak for this and the two electrons 

are located in different spaces thus becoming spin 

correlated? This supremely influential molecular aspect 

of graphene can be visualized on the platform of 

molecular quantum theory.  

When speaking about electron correlation, one must 

address the problem to the configuration interaction 

(CI). However, neither full CI nor any its truncated 

versions, clear and transparent conceptually, can be 

applied for computations valuable for graphene 

nanoscience that requires a vast number of 

computations to be performed as well as a great 

number of atoms to be considered [2, 3]. Owing to this, 

techniques based on single unrestricted open-shell 

determinants becomes the only alternative. 

Unrestricted Hartree-Fock (UHF) and unrestricted 

DFT (spin polarized, UDFT) approaches form the 

techniques ground and are both sensitive to the 

electron correlation, but differently due to different 

dependence of their algorithms on electron spins [4, 5]. 

Application of the approaches raises two questions: 1) 

what are criteria that show the electron correlation in 

the studied system and 2) how much are the solutions 

of single-determinant approaches informative for a 

system of correlated electrons.  

Answering the first question, three criteria, which 

highlight the electron correlation at the single-

determinant level of theory, can be suggested. Those 

concern the following characteristic parameters:  

Criterion 1: 
 

 0
RUE ,  
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where RU R UE E E  presents a misalignment of 
energy. Here, RE and UE are total energies calculated 
by using restricted and unrestricted versions of the 
program in use. 

Criterion 2: 
 

 0DN ,   
 

where DN  is the total number of effectively unpaired 
electrons and is determined as 

 

 0DN trD r r  and AD AN D .  
 

Here, D r r  [6] and AD  [7]  present  the  total  and  
atom-fractioned spin density caused by the spin 
asymmetry due to the location of electrons with 
different spins in different spaces. 

Criterion 3:  
 

 2̂ 0S ,  
 

where 2 2
ˆ ˆ

( 1)US S S S  presents the misalignment 
of  squared  spin.  Here,  2̂

US  is the squared spin 
calculated within the applied unrestricted technique 
while S(S+1) presents the exact value of 2̂S . 

Criterion 1 follows from a well known fact that the 
electron correlation, if available, lowers the total 
energy. Criterion 2 highlights the fact that the electron 
correlation is accompanied with the appearance of 
effectively unpaired electrons that provide the molecule 

radicalization [6-8]. These electrons total number 
depends on interatomic distance: when the latter is 
under a critical value cov

critR , two adjacent electrons are 
covalently bound and ND  0. However, when the 
distance exceeds cov

critR , the two electrons become 
unpaired, ND  0,  the  more,  the  larger  is  the  
interatomic spacing. In the case of the sp2 C-C bonds, 

cov
critR =1.395 Å. Criterion 3 is the manifestation of the 

spin contamination of unrestricted single-determinant 
solutions [6-8]; the stronger electron correlation, the 
bigger spin contamination of the studied spin state.  

Table 1 presents sets of the three parameters 
evaluated  for  a  number  of  right-angled  (na, nz) 
fragments of graphene (na and nz count the numbers of 
benzenoid units along armchair and zigzag edges of the 
fragment), nanographenes, NGrs below, by using AM1 
version of semiempirical UHF approach implemented 
in the CLUSTER-Z1 codes. To our knowledge, only 
these codes allow for computing all the above three 
parameters simultaneously.  

The data convincingly evidence that the electron 
correlation in graphene is significant. In view of the 
correlation, one can answer the second question put 
above suggesting quantitative explanation of 
peculiarities of the graphene magnetism, chemistry, 
and mechanics, much as this has been done for 
fullerenes [3].  

 

 
Table 1 – Identifying parameters of the odd electron correlation in right-angle nanographenes 

 
Fragment 

,a zn n  
Odd electrons 

oddN  
RUE 1 

kcal/mol 
RUE  % 2 

DN , e- 
DN , % 2 2̂

US  

(5, 5) 88 307 17 31 35 15.5 
(7, 7) 150 376 15 52.6 35 26.3 
(9, 9) 228 641 19 76.2 35 38.1 
(11, 10) 296 760 19 94.5 32 47.24 
(11, 12) 346 901 20 107.4 31 53.7 
(15, 12) 456 1038 19 139 31 69.5 

1 Presented energy values are rounded off to an integer 
2 The percentage values are related to / (0)RU RU RE E E and /D D oddN N N , respectively 
 
 
 
 
 

3. CONCLUSIVE REMARKS 
 
Data  presented  in  the  current  paper  have  shown  

that the correlation of odd electrons in graphene is 
significant so that the species should be attributed to 
correlated ones. This finding considerably complicates 
the computational strategy addressing it to CI 
computational schemes. Owing to serious problems 
related to the realization of such schemes in practice, a 
compromise can be suggested by using single-
determinant approaches based on either Hartree-Fock 
or density-functional theory in the form of unrestricted 
open-shell presentation. Both computational schemes 
can fix the electron correlation, while only the Hartree-
Fock theory suggests a set of quantities to be calculated 
that can quantitatively characterize the electron 
correlation and be used for a quantitative description of 

such graphene properties as magnetism, chemical 
reactivity, and mechanical response.  

Magnetic constant J , the inverse value of which 
directly characterizes the strength of the electron 
correlation [9], lays the foundation of the description of 
magnetic properties of graphene. As shown, the 
constant is ~-16 kcal/mol for a graphene regular 
crystal, which is too much for the magnetism to be 
observable. In contrast to crystalline graphene, 
nondeformed and nondestructured nanographenes can 
be magnetic, since the magnetic constant rough-
inversely depends on the NGr size. The latter 
determines the correlation zone and provides a 
recordable magnetization if J  is  from  a  few  units  to  
tens nanometers. Small enough J values  can  be  
provided as well by magnetic nanostructuring of rather 
large graphene pieces caused by the introduction of 
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half-spin impurities or defects into the graphene body. 
Additionally, the odd number of the latter may change 
the singlet spin multiplicity of the ground state. Both 
scenarios find their verification in practice.  

The correlated-electron algorithm-in-action has 
been applied in the current paper to the chemical 
modification of (5, 5) NGr by the example of its 
algorithmic stepwise hydrogenation [10]. As shown, 
both the hydrogenation of NGr itself and the final 
hydrides depend on several external factors, namely: 1) 
the state of the fixation of graphene substrate; 2) the 
accessibility of the substrate sides to hydrogen; and 3) 
molecular or atomic composition of the hydrogen vapor. 
These circumstances make both computational 
consideration and technology of the graphene 
hydrogenation multimode with the number of variants 
not less than eight if only molecular and atomic 
adsorption does not occur simultaneously. Thus, in full 
agreement with experimental evidence, a regular chair-
like cyclohexanoid structure known as graphane can be 
obtained only for fixed membranes accessible to 
hydrogen atoms from both sides. Oppositely, one-side 
hydrogenation of the membrane results in irregular 
quasi-amorphous structure. A detailed consideration of 
all variants should be mandatory included in any 
serious project aimed at application of the hydrogen-
graphene-based nanomaterials in general and for 
hydrogen-stored fuel cells, in particular.  

The electron correlation is highly sensitive to the 
graphene deformation since the interatomic spacing is 
the main regulator of the former. Both static and 
dynamic deformation may influence the action. Static 

deformation, considered in the paper, is caused by one-
side hydrogenation of the pristine sample [9]. When 
hydrogen atoms are removed, the carbon skeleton 
keeps its concave, either a canopy-like or basket-like, 
shape supported by stretched C-C bonds. The 
stretching stimulates both a significant increasing of 
the number of effectively unpaired electrons and a 
remarkable decreasing the magnetic constant absolute 
value. The former changes the electron-density image 
of the sample and evidence the enhancement of its 
chemical reactivity. The latter may result in the 
deformation-stimulated magnetization of the sample.  

In view of these findings, an alternative, correlated-
electron explanation of peculiarities related to the 
density images of the graphene bubbles found on 
different substrates [11] has been suggested [9].  

The dynamic deformation is illustrated by the 
example  of  the  (5,  5)  NGr uniaxial  tension.  As  shown,  
the strengthening of the electron correlation 
accompanies each step of the deformation [12]. This is 
followed by both enhancement of chemical reactivity 
and magnetic ability. In spite of predominantly plastic 
character of the graphene deformation, the latter can 
be applied to regulate both abilities of the sample.  

The odd electron correlation is not a prerogative of 
graphene only. Similar phenomenon is characteristic 
for all sp2 nanocarbons, including both fullerenes and 
nanotubes [3]. The only preference of graphene consists 
in much larger variety of cases when this inherent 
characteristic of the class can be visualized. 

 

 
 
REFERENCES 
 

1. A.K.  Geim, K. S.Novoselov, Nature Mat. 6, 183 (2007). 
2. E.R. Davidson, A.E. Clark, Phys Chem. Chem. Phys.   9, 

1881 (2007). 
3. E.F. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, 

Nanomedicine, Nanophotonics (Boca Raton: CRC Press, 
Taylor and Francis Group: 2011). 

4. E.R. Davidson, Int. J. Quant. Chem. 69, 214 (1998). 
5. I.G. Kaplan, Int. J. Quant. Chem. 107, 2595 (2007). 
6. K. Takatsuka, T. Fueno, K. Yamaguchi, Theor. Chim. 

Acta  48, 175 (1978). 
7. V.N. Staroverov, E.R. Davidson, Chem. Phys. Lett. 330, 

161 (2000). 

8. L. Lain, A. Torre, D.R. Alcoba, R.C. Bochicchio, Theor. 
Chem. Acc. 128, 405 (2011). 

9. E.F.Sheka, arXiv1201.5388v1[cond-mat.mtrl-sci]. 
10. E.F. Sheka, N.A. Popova, J. Mol. Mod. doi: 

10.1007/s00894-012-1356-9 (2012). 
11. T. Georgiou, L. Britnell, P. Blake, R.V. Gorbachev, 

A. Gholinia, A.K. Geim, C. Casiraghi, K.S. Novoselov, 
Appl. Phys. Lett. 99, 093103 (2011). 

12. E.F. Sheka, N.A. Popova, V.A. Popova, E. Nikitina, 
L. Shaymardanova, J. Mol. Mod. 17, 1121 (2011). 

 
 


	~WZ659

