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The paper presents the results of capacitance-voltage (C-V) characterization of metal-oxide-

semiconductor (MOS) structure, namely Pd/Al2O3/ In0.53Ga0.47As/InP. It is shown that MOS structure under 
study exhibit both electron and hole trapping with permanent and temporary charge trapping contribu-

tions. The interfacial transition layer between the high-k oxide and InGaAs has the greatest influence on 
this charge trapping phenomenon. 

 

Keywords: High-k oxide, InGaAs, MOS structure, MOSFET, C-V, ALD, Interface states. 
 

  PACS numbers: 72.20.Jv, 73.20. – r, 73.40.Qv 
 

 

                                                           
* ygomeniuk@gmail.com 

1. INTRODUCTION 
 

Searching for ultrathin gate dielectric materials is 

one of the major challenges associated with further 

downscaling in CMOS technology. High dielectric con-

stant (high-κ) materials with higher permittivity than 

SiO2 can be grown thicker providing the same equiva-

lent oxide thickness (EOT) and significant decreasing 

of gate leakage currents.  

While high speed logic and RF applications require 

implementing of high mobility channel materials such 

as Ge or InGaAs into CMOS technology the use of high-

κ dielectric materials in conjunction with III-V sub-

strate is highly required for the demands of future pro-

gress and improvement of MOSFET performance. 

It has been reported [1, 2] that high-κ materials often 

suffer from the charge trapping and poor electrical quali-

ty of the dielectric-semiconductor interface as compared 

to SiO2. In addition the high-κ/InGaAs MOS system ex-

hibits a relatively high level of interface states (Dit) and 

fixed oxide charges (QF) [3, 4], both of which induce 

threshold voltage shifts and degrade carrier mobility in 

InGaAs MOSFETs. The understanding of interface (Dit) 

and bulk defects in the high-κ/InxGa1-xAs/InP metal-

oxide-semiconductor (MOS) system will be essential for 

the successful implementation of high mobility channel 

materials in MOS Field Effect Transistor (MOSFET). 

In this work we present results of a study focused 

on the characterization of interface defects and bulk 

electron/hole traps in the high-κ/In0.53Ga0.47As/InP 

MOS system. 

 

2. EXPERIMENTAL 
 

The studies were performed on Pd/Al2O3/ 

In0.53Ga0.47As/InP MOS structures with high-κ Al2O3 

oxide layers formed by atomic layer deposition (ALD) of 

nominal physical thickness of 5, 10, 15 and 20 nm. The 

top Pd gate metallization was obtained by a shadow 

mask process. The samples received no post-

metallization annealing treatment. To investigate hole 

and electron trapping in the bulk of oxide film, samples 

with both n- and p- type doped (4  1017 cm-3) 

In0.53Ga0.47As epitaxial layers were examined. 

MOS capacitors were characterized by capacitance-

voltage (C-V) measurements at room temperature us-

ing an Agilent E4980A Precision LCR meter. 
 

3. RESULTS AND DISCUSSION 
 

Fig. 1 presents the relation between inverse of max-

imum accumulation capacitance, 1/Cmax, and oxide 

thickness, tOX, for Al2O3/In0.53Ga0.47As MOS structure 

with tOX ranging from 5 nm to 20 nm. 
 

 
 

Fig. 1 – 1/Cmax versus oxide thickness (tOX) for MOS structures 

with tOX ranging from 5 nm to 20 nm 
 

The Al2O3 κ-value (8.6) was obtained from the slope 

of the capacitance equivalent thickness in accumulation 

versus the oxide thickness tox. The cross-sectional high 

resolution transmission electron microscopy (HRTEM) 

image through the gate oxide region confirmed a nomi-

nal thickness of 10 nm (Fig. 2). 

The high-κ/In0.53Ga0.47As system typically exhibit in-

terface state densities (Dit) to be in the range mid-1012 to 

1013 cm-2 eV-1 [4-6]. Analysis of the capacitance-voltage 

(C-V) response indicates interface states of predominant-

ly donor type with Dit ranging from 0.8  1013 to 

1.5  1013 cm-2. These results are consistent with AsGa 

antisite defects based on hybrid density functional calcu-

lations of point defects in III–V compounds [7]. Recent 

studies show that similar C-V responses are obtained for 

a wide range of oxides (SrTa2O6, HfO2, Si3N4) which 

could be the result of the defects originating from 

In0.53Ga0.47As surface.  
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Fig. 2 – Cross sectional HRTEM image of the structure with  

tOX = 10 nm. 
 

High-frequency C-V characteristics were measured 

on MOS capacitors at room temperature (Fig. 3). The 

results indicate that both electrons and holes are 

trapped for n- and p- In0.53Ga0.47As MOS structures, 

respectively. The flatband voltage shift corresponds to 

charge trapping (QT) level of ~1x1013 cm-2 which is com-

parable to, or larger than, the interface state density 

(Dit) integrated across the In0.53Ga0.47As band gap. 
 

a)  

b)  
 

Fig. 3 – Frequency dependence of C-V characteristic for a 

Pd/Al2O3(5nm)/p- (a) n- (b) In0.53Ga0.47As/InP MOS structure at 

room temperature. 
 

Moreover, the trapping is primarily a reversible pro-

cess, where the trapped charge removed at the onset of a 

second C-V hysteresis sweep. More C-V sweeps were 

carried out with charging in accumulation regime within 

hold time of 1, 3, 10, 30, 100, 300 and 1000 seconds 

which showed no presence of degradation after tests 

(Fig. 4). 
 

 
 

Fig. 4 – High-frequency (300 kHz) C-V characteristics biased at 

accumulation regime within hold time of 1, 3, 10, 30, 100, 300 

and 1000 seconds at room temperature. 

 

The trapped charge density also depends on the hold 

time and maximum gate bias. Based on samples with 

variable high-κ thickness, C-V hysteresis studies reveal 

a linear increase in C-V hysteresis with increasing oxide 

thickness (Fig 5). All of these experimental observations 

and analysis are consistent with the charge trapping 

taking place primarily as a line charge at the high-

κ/In0.53Ga0.47As interface, which can contain native ox-

ides of Ga, In and As [8]. 
 

  
 

Fig. 5 – C-V hysteresis as a function of oxide thickness for 

Pd/Al2O3/n-In0.53Ga0.47As/InP MOS structure. The linear in-

crease in C-V hysteresis (or ΔV) with increasing oxide thickness 
indicates the trapping charge is primarily a sheet charge, ΔV = 
Qtrapped * (tox/ε0εox). From the gradient Qtrapped = 3.3 x 1012 cm-2 

(negative charge). 

 

In summary, Pd/high-κ/In0.53Ga0.47As/InP MOS ca-

pacitors exhibit both electron and hole trapping with 

permanent and temporary charge trapping contribu-

tions. The interfacial transition layer between the high-κ 

oxide and In0.53Ga0.47As has the greatest influence on 

this charge trapping phenomenon. 
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