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In present study, Artificial Neural Network (ANN) approach to prediction of the ODS Magnesium ma-

trix composite mechanical properties obtained was used. Several composition of Mg- Al2O3 composites with 
four different amount of Al2O3 reinforcement with four different size of nanometer to micrometer were pro-

duced in different sintering times. The specimens were characterized using metallographic observation, 
microhardness and strength (UTS) measurements. Then, for modeling and prediction of mentioned condi-

tions, a multi layer perceptron back propagation feed forward neural network was constructed to evaluate 
and compare the experimental calculated data to predicted values. In neural network training modules, 

different composition, sintering time and reinforcement size were used as input (3 inputs), hardness and 
Ultimate Tensile Strength(UTS) were used as output. Then, the neural network was trained using the 

prepared training set. At the end of training process the test data were used to check the system’s accura-
cy. As a result, the comparison of neural network output results with the results from experiments and 

empirical relationship has shown good agreement with average error of 2.5%. 
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1. INTRODUCTION  
 

Metal Matrix Composites (MMCs) have been widely 

recognized to have relatively superior mechanical prop-

erties, such as better wear resistance, higher elastic 

modulus and yield strength, as compared to the unrein-

forced monolithic metal. As compared to fiber rein-

forced MMCs, particulate reinforced MMCs are gaining 

popularity due to their ease of fabrication, high 

throughput and lower manufacturing cost [1]. Among 

the various types of MMCs, light-weight MMCs such as 

magnesium (Mg) based composites are arousing more 

interest due to their potential applications in aero-

space, automotive and sports equipment industries. 

With a judicious selection of particulate reinforce-

ments, magnesium based composites are known to have 

high specific mechanical properties [2], low density, 

improved thermal and dimensional stability and better 

damping properties.  

 Al2O3 short fibers and particulates are commonly 

used as reinforcement for magnesium and have been 

shown to improve the tensile strength of magnesium 

alloys [3,4] and thermal stability of the grain structure 

in pure magnesium [5]. Additionally, recent studies on 

reinforcing pure magnesium with sub-micron and 

nano-size Al2O3 particulates have shown promising 

results with simultaneous increment observed in both 

strength and ductility of magnesium using both solidi-

fication and powder metallurgy techniques [6,7]. 

 Artificial Neural Networks (ANNs) have been 

emerged as a new branch of computing, suitable for 

application in a wide range of fields. A lot of studies 

have been published in which the prediction of several 

composites properties [8-10]. 

ANNs are based on the neural structure of the hu-

man brain, which processes information between many 

neurons and in the past few years there has been a 

constant increase in interest of neural network model-

ing in different field of materials science [9-12]. The 

basic unit in ANNs is the neuron. The neurons are con-

nected to each other with weight factor that determines 

the strength of the inter connections and thus the con-

tribution of that interconnection to the following neu-

rons. ANNs can be trained to perform a particular 

function by adjusting the values of these weight factors 

between the neurons either from the information from 

outside the network or by the neuron themselves in 

response to input. This is the key to ability of ANNs to 

achieve learning and memory. 

The multilayered neural Network (MLP) is the most 

widely applied to neural network which has been used 

in most researches so far[7]. A back propagation algo-

rithm can be used to train these multilayer feed for-

ward networks with differentiable transfer function to 

approximation, pattern association and pattern classi-

fication. The term back propagation refers to the pro-

cess by which derivatives of network error, with respect 

to network weight and biases can be computed. The 

training of ANNs by back propagation involves these 

stage: 

 The feed forward of the input training pattern 

 The calculation and back propagation of the 

associated error 

 The adjustment of weights 

This process can be used with a number of different 

optimization strategies. In present study, a MLP neu-

ral network was used to prediction and confirmation of 

experimental results of microhardness and UTS of Mg-

Al2O3 composites. 

 

2. EXPRIMENTAL PROCEDURE  
 

Magnesium powder (average size of 50 m) and 

Al2O3 particles with four different size of 50 nm, 

200 nm, 1 m and 50 m were used for production of 

Mg-Al2O3 nanocomposites. Also, several weight percent 
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of Al2O3 reinforcement (0.25, 0.5, 1 and 1.5%) were 

used. The powder mixture were mechanically alloyed in 

a ball mill in 15 hr and with ball to powder ratio (BPR) 

of 1:10. Then the composite powders were consolidated 

to green parts. Sintering process was carried out at 

610 C at several sintering time (15, 30, 60, 90, 120, 

150 min.) in reducing atmosphere. 

Hardness and Ultimate Tensile strength(UTS) 

measurements were performed to evaluating the prop-

erties of these composites. 

A Back Propagation Algorithm was used for model-

ing and prediction of results with ANNs .In this model-

ing process the composite composition, sintering time 

and reinforcement size were used as input and hard-

ness and UTS were recorded as output parameters in 

ANNs design. MLP architecture and training parame-

ters were presented in Table 1 and ANNs block dia-

gram given at Fig. 1. 
 

Table 1 – Multilayer perceptron architecture and training 
parameters 

 

The number of neurons on the 

layers 

Input:3,Hidden:10, 

Output: 2 

The initial weights and biases 
Randomly be-

tween -1 to 1 

Activation functions for hidden 

and output layers 
Log Sigmoid 

Training parameters learning 

rule 
Back Propagation 

Adaptive learning rate of hid-

den/output layer 
0.2 

Number of iteration 15000 

Momentum constant 0.5 

Acceptable mean squared error 0.001 
 

 
 

Fig. 1 – ANNs Block diagram in this study 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 The Effect of Sintering Time on the Mechan-

ical Properties  
 

Fig. 2, Fig. 3 and Table 2, Table 3 are shown the ef-

fect of processing parameters consisting sintering time 

and Al2O3 reinforcement(amount and size) on the micro-

hardness and UTS of composites. As seen, in every group 

of composites, in a given sintering temperature of 61 C, 

hardness and UTS increases as the sintering time in-

creases from 15 to 90 min and then show a decrease in 

hardness from 90 to 15 min. During sintering process in 

addition to consolidation and bonding of particles in 

structure, the recrystallization and growth occurs in mi-

crostructure, as the sintering time increases there is 

enough time for growth of nucleated grains and coarsen-

ing. Therefore, coarse grain structure will be occur with 

increased sintering time.  
 

 
 

Fig. 2 – The effect of sintering time on the microhardness of 

Mg-Al2O3 composite with nano size reinforcement 
 

 

 

Fig. 3 – The effect of sintering time on the UTS of Mg-Al2O3 
composite with nano size reinforcement 

 

3.2 The effect of amount and Reinforcement size 

on the Mechanical properties 
 

As it is see in Fig. 4 and Fig. 5, in a given sintering 

time, hardness and UTS increase as the amount of re-

inforcement from 0.25 to 1.5% wt. Also, hardness and 

UTS of composites decrease as the size of reinforcement 

increase from nanosize to micron level. Higher values 

of microhardness and UTS observed for the composite 

with 1.5wt % of 50 nm reinforcement at sintering time 

of 90 min. 

The increase in hardness of the magnesium matrix 

with the addition of nano-size reinforcements can be 

attributed primarily to the: (i) presence of harder na-

nopowder reinforcement in the matrix and (ii) higher 

constraint to the localized matrix deformation due to 

the presence of harder phases. These results are con-

sistent with the trend observed by other investigators 

[13-15]. The increase in UTS can be attributed to the 

combined influence of: (i) work hardening due to the 

strain misfit between the reinforcing particulates and 

the matrix, (ii) the formation of internal thermal 

stresses due to different thermal expansion behavior 

between Al2O3 reinforcement and the matrix, (iii) Oro-

wan strengthening and (iv) reduction in grain size. Oro-

wan strengthening due to the presence of sub-micron and 

nano-size particulates has been shown to contribute to the 

improvement in the yield strength of particulate rein-

forced metal matrix composites [14-17]. 

Experimental 

Experimental 
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Table 2 – The effect of processing parameters on the microhardness and UTS values of composites(Experimental and Predicted Values) 
 

Comp. 
Sintering 

Time(Min.) 

Reinforcement 

size(µm) 

Microhardness(HV) UTS(MPa) 

Experimental 

Values 

Predicted 

Values 
%Error 

Experimental 

Values 

Predicted 

Values 
%Error 

M
g
-

0
.2

5
A

l 2

O
3
 

90 

0.05 48.234 47.893 -0.712 175.450 177.034 0.894743 

0.20 43.623 43.004 -1.4394 168.679 168.123 -0.33071 

1.00 40.033 38.984 -2.69085 159.467 158.943 -0.32968 

50.00 36.970 36.000 -2.69444 151.349 152.496 0.752151 

M
g
-

0
.5

0
A

l 2

O
3
 

90 

0.05 54.023 55.012 1.79779 180.289 181.338 0.578478 

0.20 49.738 48.234 -3.11813 173.945 174.034 0.051139 

1.00 42.546 43.258 1.645938 165.345 165.007 -0.20484 

50.00 39.134 38.945 -0.4853 160.223 159.582 -0.40167 

M
g
-

1
.0

0
A

l 2

O
3
 

90 

0.05 60.695 61.485 1.284866 213.556 212.421 -0.53432 

0.20 52.078 53.674 2.973507 203.669 202.497 -0.57877 

1.00 47.893 46.896 -2.12598 195.234 196.329 0.557737 

50.00 42.356 41.557 -1.92266 189.492 191.056 0.818608 

M
g
-

1
.5

0
A

l 2

O
3
 

90 

0.05 68.945 69.456 0.735718 209.168 208.228 -0.45143 

0.20 62.567 61.789 -1.25912 200.005 201.834 0.90619 

1.00 56.355 55.006 -2.45246 191.407 190.491 -0.48086 

50.00 51.667 53.045 2.597794 185.038 186.330 0.693393 

 

Mathematically, the contribution to yield strength by 

Orowan strengthening can be expressed as [18]: 
 

 
0.4 .

ln / 1orowan Mg

G B d
M

d
 

 

where 2 / 3d d , Mg is the Poisson’s ratio for Mg and 

 is the mean inter-particle distance given by 

/ 4 1d f .  

The increase in strength of the Mg/Al2O3 composites 

can be partly attributable to the reduction in grain size. 

The refinement in grain size arises due to the presence of 

reinforcing particles which acts as nucleation sites during 

recrystallization and the pinning of grain boundaries by 

the particles resulting in limited grain growth. 
 

 
 

Fig. 4 – The effect of Reinforcement size on the microhardness of 

composites at sintering time of 90min 
 

In this study, prediction of Microhardness and UTS of 

Mg-Al2O3 MMC were performed using a back propagation  

neural network. These experimental results have been 

compared with ANNS results. Iteration number has been 

selected 15000. Three input neurons, 10 neurons in in-

termediate layers and 2 output neurons [3:10:2] have been 

selected for this study. The learning rate and momentum 

values have been selected as 0.2 and 0.5, respectively. 

 
 

Fig. 5 – The effect of Reinforcement size on the UTS of composites 

at sintering time of 90 min 

 

4. CONCLUSIONS 
 

In present study, prediction of Mg-Al2O3 compo-

sites under several processing conditions was per-

formed. Following results were obtained: 

 Sintering time and reinforcement size and 

amount were used as input while the microhardness 

and UTS were the output of the model. These data 

were obtained from experimental work. 

 Fig. 6 and Fig. 7 shows the predicted values 

of microhardness and UTS, respectively. Microhard-

ness and UTS of specimens have shown a consistency 

with predicted results. Theses trained values had an 

average error of 2.5% in Microhardness and 1.5% in 

UTS values. 

 Artificial Neural Network (ANNS) can be used 

as efficient tool in predicting composite properties. Un-

der given condition and prescribed materials predicted 

values of properties can be utilized by designers and 

process engineers and account as a cost saving item in 

process.  

 Experimental microhardness and UTS of spec-

imens have shown a consistency and good agreement 

with predicted results of ANNs model.  

 In this study, designed ANN model was pre-

dicted the microhardness with an average error of 2.5% 

and UTS with about 1.5%. 
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Fig. 6 – The Effect of sintering time on the microhardness of 

Mg-Al2O3 composite with nano size reinforcement (Predicted) 
 

 
 

Fig. 7 – The Effect of sintering time on the UTS of Mg-Al2O3 

composite with nano size reinforcement(Predicted) 
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