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In this paper, the further development of the synergetic model describing the ultrathin lubricant film state 

clamped between two atomically smooth solid surfaces operating under boundary friction mode has been done 

based on the Lorentz model for the approximation of a viscoelastic medium. In all cases, the phase portraits have 

been built. It has been found that the friction surfaces' temperature increasing leads to the growth of stochastici-

ty in the investigated system. In the phase plane the stochastic oscillation mode can be described as a strange at-

tractor. Also, the behavior of two different types of tribosystems were described using current model. The first 

was the system with the unidirectional shear of the surfaces and, and the second was the system under an alter-

nating external effect. Obtained results agree qualitatively with known experimental data. 
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1. INTRODUCTION  
 

The study of the boundary friction processes that de-

velop in nanosized tribosystems has drawn active interest 

from many researchers. One of the evolving directions is 

the investigation of the friction of atomically smooth solid 

surfaces in the presence of an ultrathin film of a homoge-

neous lubricant between them. A synergetic representa-

tion of the boundary friction processes [1-4] makes it pos-

sible to describe the nontrivial behavior of an ultrathin 

lubricating film clamped between two solids that are in 

relative motion. The model is based on a system of three 

differential equations for the stresses, strains, and lubri-

cating film temperature. In this work, the problem of the 

occurrence of oscillations in the system in the determinis-

tic chaos mode that, according to the structure of the basic 

equations, can be observed in the synergetic representa-

tion has been studied.  

 
2. BASIC EQUATIONS 

 

The system of the basic equations for the stresses, 

strains, and lubricating film temperature is as follows [1–

4]:  
 

 g       (1) 
 

 ( 1)T        (2) 
 

 2( )eT T T        (3) 

 

where  is the shear component of the stresses that arise 

in the lubricating film,  is the shear component of the 

relative strains, T is the lubricating film temperature, and 

Te is the friction surface temperature. All of these parame-

ters are dimensionless, which makes it possible to carry 

out a qualitative analysis without considering the charac-

teristics of a given tribosystem. The constant g  1, which 

is numerically equal to the ratio of the lubricant shear 

modulus to its characteristic value, and the following pa-
rameters    / 

 ,    / 
 where  ,  and T are the 

times of relaxation of the stresses, strains, and tempera-

ture, respectively. 

In the general case, when all of the relaxation times in 

system (1)–(3) have nonzero values, it is reduced to the 

following third-order differential equation: 
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 (4) 

 

Since the behavior of the system described by Eq. (4) 

depends critically on the initial conditions, it is appropri-

ate to present the solution as phase portraits. Figure 1 

shows the corresponding phase portraits at different tem-

peratures of the friction surfaces Te. In all of the figures, 

the initial value of the second time derivative is 0 0  . 

The initial values of   and can be seen directly on the 

phase planes and correspond to the origin of the phase 

trajectories.  

Let us consider in more details Fig. 1a. The phase por-

trait is characterized by the only critical point at the 

origin of coordinates when 0   ; this point is a sta-

ble focus. In particular, at the initial value 0  0, the fo-

cus becomes more pronounced (trajectory 7). It can be seen 

that, for trajectories 2, 3, 5, and 6, an aperiodic mode is 

realized. Trajectories 1, 4, and 7 correspond to the damped 

oscillation mode. For the parameters of trajectory 7, 

damping is less pronounced, since several oscillations are 

observed in the vicinity of the stable value   0 during 

relaxation. 

Fig. 1b illustrates a phase portrait at the temperature 

of the friction surfaces Te  Tc0 at which we have the non-

zero value of the stresses and the rubbing block moves 

with the nonzero velocity. In the phase portrait, two criti-
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cal points occur with the coordinates (0, 0) and (– 0, 0) 

that are symmetric with regard to the origin of coordi-

nates. Both points are equivalent and represent stable 

focuses around which long oscillations develop until the 

block begins to move with a constant velocity.  

As the temperature Te elevates, the situation shown by 

the phase portrait in Fig. 1c is achieved. In this case, the 

set of the initial values has a critical effect on the behavior 

of the system. It can be seen that, at low absolute values 

of the stresses and the rate of their change, the same criti-

cal points occur in the phase portrait as in Fig. 2b (trajec-

tories 2 and 3 in Fig. 1c). However, if in the beginning of 

motion, the initial values exceed critical values, a chaotic 

mode sets in. In this case, no stationary state is achieved 

with time, but constant phase transitions between the 

solid- and fluid-like lubricant states occur (trajectory 1). It 

can be seen in Fig. 1c that this mode is not periodic in 

time and represents a strange attractor, i.e., a realization 

of the deterministic chaotic mode. 

Fig. 1d is plotted at a fairly high value of the tempera-

ture Te. the arrow in the right part of the figure shows the 

point that corresponds to the origin of the trajectory (ini-

tial conditions during the solution of Eq. (4). In this figure, 

two symmetric critical points occur and are shown by the 

points on the abscissa axis. Unlike Fig. 1c in which the 

stable focuses are presented, these points are unstable 

focuses. We note that the phase trajectory is shaped as a 

Lorentz strange attractor [5, 6] and, in this case, the mode 

that occurs is characterized by a more pronounced sto-

chastic behavior than that shown in Fig. 1c.  

This work presents the subsequent development of the 

synergetic model, which describes the state of an ultrathin 

lubricating film clamped between two atomically smooth 

solid surfaces during boundary friction. It has been shown 

that the use of this model can make it possible to describe 

the behavior of various types of tribosystems. The stick-

slip mode frequently observed in experiments has been 

depicted. In this mode, consecutive transitions between 

the structural states of the lubricant occur. This work 

makes it possible to extend the results of the previous 

studies obtained in the synergetic model, since the de-

scribed stick-slip mode has a deterministic nature. This 

has not been shown previously, but is observed in numer-

ous experiments on studying the boundary friction pro-

cesses. An equation of motion for the stresses has been 

derived in the form of a three-order differential equation 

and analyzed at various friction surface temperatures. It 

has been found that, depending on the temperature and 

the lubricant parameters, either the damped oscillation 

mode or the stochastic oscillation mode may occur. When 

the temperature exceeds a critical value, the system fol-

lows the mode described by the Lorentz attractor. In the 

wide range of parameters, the reverse motion of the rub-

bing surfaces occurs. Our results agree qualitatively with 

known experimental data. It has been shown that, in all of 

the considered modes, a similar transient mode occurs in a 

definite range of initial conditions. This mode involves 

damped oscillations and the subsequent stick of the sur-

faces together for a long time, after which a stationary 

mode of friction sets in. 
 

 
 

Fig. 1 – Phase portraits of system obtained during numerical solution of equations (1-3) at parameters g  0.25, τ  3, and δ  95. 
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