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Research results of influence of a uniform magnetic field by induction of 200 mT on the longitudinal 

gauge factor of nanocrystalline film systems of Ni/Ag/Ni with different thickness of non-magnetic layer of 

Ag within elastic deformation up to 1 are presented. The paper describes methods of forming three-layer 

structure based on thin films Ni and Ag and research of the structure and phase composition of the ob-

tained samples. The correlation between the factor value of the longitudinal gauge and structural-phase 

state of film systems is set. 
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1. INTRODUCTION 
 

Physical properties of magnetic nanostructures of 
different types occupy one of the leading positions in 

advanced scientific researches [1-3]. The interest in 

them is due to both the fundamental issues of the na-
ture of magnetism of nanoscale film systems and a 

wide range of their practical application [4, 5]. Studies 

in the area of magnetofield  influence confirm that with 
moderate magnetic fields it is possible contactless effect 

on the dynamics of structural defects at different levels 

[6], and hence on the mechanical properties of materi-

als and performance of devices [7, 8]. Thus, the study of 
the simultaneous effect of deformation and weak mag-

netic fields on the performance and mechanical proper-

ties of solids of different nature gives the possibility of 
building multi-functional controllers and sensors [9]. 

The study of influence of a weak magnetic field on the 

mechanical properties of various materials consistently 

were carried out in the works [6, 10]. In the case of non-
magnetic crystals authors [6] could observe the motion 

of dislocations initiated by the magnetic field with in-

duction 0,1 – 1,6 T without additional mechanical load. 
In the work [6] it is shown that magnetic fields reduce 

the height of the potential barriers to the motion of 

dislocations, and the driving force for the transporta-
tion of dislocations is a random distribution of fields of 

internal stresses. Exposure of aluminum samples in the 

magnetic field reduces the micro hardness and increas-

es the strength of material [6]. The magnetic field is 
particularly affects the elastic properties of magnetical-

ly ordered materials [8, 11]. 

Thus, the aim of this study was to investigate the 
influence of a weak uniform magnetic field on a longi-

tudinal gauge factor of three-layer systems based on 

nanocrystalline films of Ni and Ag within the elastic 

deformation up to 1. Attention to the systems based 
on Ni and Ag films is connected with discovery of gi-

ant magnetoresistance phenomenon in the granular 
structure of ferromagnet-normal metal Ni-Ag [12]. 

Nanocrystalline materials are also characterized by 

high strength at low temperatures due to grain-

boundary strengthening effect Hall-Patch and unique 
superplasticity at elevated temperatures [13]. 

2. EXPERIMENTAL 
 

Thin films Ni, Ag, and three-layer systems of 

Ni(10)/Ag(dAg)/Ni(30)/S (S – substrate, the value of thick-

ness is in nm) were obtained by method of thermal evapo-

ration in vacuum of 10-3 – 10-4 Pa. As substrates, during 

the tensoresistive studies served previously polished spe-

cially made Teflon substrates. This material was chosen 

because of its satisfactory heat resistance, elasticity and 

low chemical activity. Deposition of each layer of materials 

was carried out of two evaporators on the heated sub-

strate (320 – 350 K) in a single technological cycle. Listed 

qualities of the substrate allowed to anneal film samples 

up to 520 K and to work within the elastic deformation 

from 0 to 1. Films with substrates deformed in pace of 

0.05. To investigate the phenomenon of gauge of one- or 

three-layer films a specially designed device (deformation 

machine) was used that allowed to deform the film and 

simultaneously to measure its resistance to electricity 

directly in  operating vacuum chamber installation VUP-

5M. For the computation of the gauge factor 5-7 defor-

mation cycles "load  unload" were performed without 

field action and in perpendicular to the plane of the sam-

ple magnetic field by induction of 200 mT. For angular 

dependency ratio ΔR/R of l gauge factor l  was calculat-

ed. 

Thicknesses of individual layers were determined by 

method of quartz resonator and checked by interferomet-

ric method. The thickness of silver layer (dAg) varied in the 

range from 3 to 50 nm, and the thickness of the Ni layers 

remained fixed 10 and 30 nm for each film system. 
The phase state and crystalline structure were inves-

tigated by electron diffraction and electron microscopy 
methods (high resolution transmission electron micro-

scope TЕМ-125K). 

 
3. RESULTS AND DISCUSSION  

 

Taking into account the possible influence of the phase 

composition and the structure of components on the me-

chanical properties of three-layer samples, single-layer 

films Ni and Ag were investigated. Ag has fcc structure 

with the mean lattice parameter ā (fcc-

Ag)  0,408  0,001 nm. The value agrees well with the 
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tabulated data a0 (fcc-Ag)  0,409 nm [14]. The average 

crystallite size is L  40 nm. Annealing of sample at the 

temperature of 750 K does not lead to changes in the 

phase composition, but causes the increase up to 65 nm. 

Single-layer film Ni also have fcc structure with the mean 

lattice parameter ā (fcc-Ni)  0,353  0,001 nm, which 

corresponds to the tabulated value for bulk samples 

a0 (fcc-Ni)  0,352 nm [14]. When annealing in the tem-

perature range of 600 – 750 K the average crystallite size 

increases from 35 nm to 50 nm. The average crystallite 

size of Ni and Ag films is also sensitive to the thickness of 

the sample.  

It is known [15] that the degree of dispersion of crys-

tallites affects the electrical and physical properties and 

parameters of films electromigration. Thus, forming film 

samples with a particular grain size allow to control elec-

trical and physical properties and to consider them in the 

transition from one- to three-layer samples. 

The diagram of Ag-Ni state is a simple monotectonic 

system. The maximum solubility of Ag in Ni is 1 at. 

and decreases with temperature decrease [16]. So, elec-

tronographical data presented in figure 6 only prove the 

two-phase composition of film systems 

Ni(10)/Ag(dAg)/Ni(30)/S (see Fig. 1). In the diffraction pat-

terns rings of both metals can be observed (see Table 1). 

So, after condensation the personality of separate layers of 

Ni(10)/Ag(dAg)/Ni(30)/S system is maintained. Metals Ni 

and Ag in the three-layer structure have fcc lattice with 

the average parameters ā (fcc-Ag)  0,410  0,001 nm and 

ā (fcc-Ni)  0,354  0,001, which corresponds to the tabu-

lated value for bulk samples [14]. 

Typical strain dependences of ΔR/R and R vs. εl for the 

three-layer film systems of Ni(10)/Ag(dAg)/Ni(30)/S in the 

absence of magnetic field and in the magnetic field of 

B  200 mT are presented in Fig. 2 respectively. On the 

basis of indicated data the calculation of dependences of 

the gauge factor in the interval of deformation l  0 – 1 

was carried out.  

For thin films Ag are typical relatively small values of 

gauge factor l   2 – 2,3 and its linearity in the indicated 

interval of deformation. When putting single-layer films of 

silver in the external magnetic field induction of 200 mT 

gauge factor almost does not change (see Fig. 3a). 

Strain dependences of Nickel films are characterized 

by a significant difference between the first cycle "load - 

unload" from the next ones that it is possibly associated 

with the occurrence of relaxation processes. Starting with 

the second cycle there is a stabilization of strain properties 

of thin film samples Ni. Gauge factor of monolayer films of 

Ni increases markedly with the introduction of the exter-

nal magnetic field (see Fig. 3b). 

Analysis of the results showed that the longitudinal 

gauge factor of film system (see Fig. 3c) with a 

relatively small thickness of the layer of silver 

(dAg  10 nm) is of the order of 9 units. With increasing 

thickness of silver to dAg  40 – 42 nm gauge factor is 

reduced up to 6 units and in the range of 40 – 50 nm it 

drops to 1,5. This can be explained by the fact that the 

total thickness of the film system increases and 

therefore the impact of interface scattering of electrons 

on the value of gauge factor reduces. In putting this 

film system to the external surface of the sample 

perpendicular to the magnetic field induction of 200 mT 

increases in gauge factor is observed regardless of the 

thickness of silver. 

 

  

a b 

Fig. 1 – Сrystalline structure and diffraction patern of film systems Ni(10)/Ag(10)/Ni(30)/S (a) and Ni(10)/Ag(40)/Ni(30)/S (b) after 

condensation 

 
Table 1 – The interpretation of diffraction pattern for film systems Ni(10)/Ag(10)/Ni(30)/S and Ni(10)/Ag(40)/Ni(30)/S 

 

№ Ni(10)/Ag(10)/Ni(30)/S № Ni(10)/Ag(40)/Ni(30)/S 

І, a.u. dhkl, nm hkl phase a, nm І, a.u. dhkl, nm hkl phase a, nm 

1 V H 0,236 111 fcc-Ag 0,409 1 m 0,237 111 fcc-Ag 0,410 

2 V H 0,204 111 fcc-Ni 0,353 2 H 0,205 200 fcc-Ag 0,410 

3 l 0,177 200 fcc-Ni 0,354 3 H 0,204 111 fcc-Ni 0,353 

4 m 0,144 220 fcc-Ag 0,407 4 l 0,178 200 fcc-Ni 0,356 

5 m 0,123 311 fcc-Ag 0,408 5 m 0,145 220 fcc-Ag 0,410 

      6 m 0,125 220 fcc-Ni 0,354 

      7 l 0,107 311 fcc-Ni 0,355 

ā(fcc-Ag)  0,408 nm; ā(fcc-Ni)  0,354 nm 

a0(fcc-Ag)  0,409 nm; a0(fcc-Ni)  0,352 nm [14] 

ā(fcc-Ag)  0,410 nm; ā(fcc-Ni)  0,354 nm 

a0(fcc-Ag)  0,409 nm; a0(fcc-Ni)  0,352 nm [14] 

H – high, m – medium, l – low. 
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Fig. 2. – Dependences ΔR/R and R vs. l for thin film system Ni(10)/Ag(10)/Ni(30)/S without field (a) and in perpendicular 

magnetic field induction of 200 mT (b) 
 

 

 Thus, at the thickness of 10 nm silver gauge factor 

increases by 22 – 24 and is 11 – 11,2 units. With in-

creasing silver thickness up to 40 – 50 nm gauge factor 

increases only by 17 – 18 and is 7 – 7,1 units. Since in 

the system Ni(10)/Ag(dAg)/Ni(30)/S the personality of sep-

arate layers is conserved, the contribution to the overall  

value of gauge factor make scattering processes at the 

interface layers, i. e. the presence of interface scattering 

increases the value of l. This gives the possibility of 

building sensing element load cell based on multilayer 

film system [5, 17], the components of which are the films 

of Ag and Ni.  

 

4. CONCLUSIONS 
 

It is determined that three-layer film systems 

Ni(10)/Ag(dAg)/Ni(30)/S (dAg  10 – 50) have gauge factor  

greater than single-layer films Ni or Ag films of the same 

thickness do. With decrease in the average grain size of 
film system, gauge factor increases. 

It is shown that in magnetic field induction of 200 mT 

gauge factor of film systems Ni(10)/Ag(dAg)/Ni(30)/S in-

creases. In the samples with thickness dAg  10 nm the 

growth of gauge factor in magnetic field is 21 – 22, 

while at dAg  40 nm the growth decreases and is 13 –

 16. 
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