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In search for new materials for nanoelectronics, many efforts have been put into development of chem-

istry and physics of graphene, and, more recently, of other inorganic layered compounds having a bandgap 

(h-BN, MoS2 etc.). Here we introduce a new view on the family of transition metal trichalcogenides MQ3 

(M=Ti, Zr, Nb, Ta; Q=S, Se), which were earlier considered as quasi-one-dimensional systems, and demon-

strate that they also may be regarded as layered species suitable for exfoliation by a chemical method. 

Stable, concentrated colloidal dispersions of high-quality crystalline NbS3 and NbSe3 nanoribbons down to 

mono- and few-layer-thick are prepared by ultrasonic treatment of the bulk compound in several common 

organic solvents (DMF, NMP, CH3CN, iPrOH, H2O/EtOH). The dispersions and thin films prepared from 

them by vacuum filtration or spraying are characterized by a set of physical-chemical methods. Current-

voltage characteristics of the NbS3 films show that charge carrier mobility is as high as 1200 – 2400 cm2V-

1s-1, exceeding that of MoS2 and making NbQ3 promising potential candidates for field-effect transistors. 
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1. INTRODUCTION 
 

Discovery of graphene has prompted a great interest 

in other inorganic layered compounds. Although graphene 

possesses extremely high carrier mobility and other re-

markable properties, zero energy gap retards its applica-

tion in logic electronics. In search for suitable materials, 

some well-known layered materials including h-BN, tran-

sition metal dichalcogenides MQ2 (M=Nb, Ta, Mo, W; 

Q=S, Se), and Bi2Q3, were reconsidered in the context of 

the present-day knowledge of low-dimensional systems [1-

13]. In the present work we focused on the niobium 

trichalcogenides NbQ3 (Q=S, Se). During several decades, 

trichalcogenides of niobium and tantalum have attracted 

considerable attention in the fundamental research as 

quasi-one-dimensional systems with intriguing structural 

and electronic properties including Peierls instability, 

formation of charge density waves and some related unu-

sual phenomena [14-15]. Although NbQ3 were considered 

traditionally as quasi-one-dimensional (1D) systems be-

cause of their high anisotropic electronic and chain-like 

structural properties, they may also be regarded as mem-

bers of the group of layered materials. The crystal struc-

tures of MQ3 consist of one-dimensional distorted trigonal 

(wedge-shaped) prisms with metal atom close to the cen-

ter of each prism (Figure 1 a). The prisms are bonded ad-

ditionally in two prism layers; thus, the same packing 

may be considered as a layered structure (Figure 1 b). 

In contrast to graphene and some of its inorganic an-

alogues, very few attempts have been made to exfoliate 

NbQ3. This may be explained by the fact that NbQ3 crys-

tals grow in the form of wires with very narrow widths 

that makes it difficult to apply mechanical exfoliation 

techniques. Therefore, we suggest an alternative way to 

exfoliate NbQ3 in liquid phase and assemble it into thin 

films suitable for nanotechnology devices. We showed 

that NbS3, NbSe3 and other trichalcogenides may be 

efficiently exfoliated down to mono- and few-layers in 

many common organic solvents resulting in high-quality 

crystalline nanoribbons stably dispersed in colloids. Liq-

uid-phase exfoliation technique is versatile, scalable, and 

well-suited to obtain NbQ3 thin films on a variety of sub-

strates. The process may be potentially extended to all 

the transition metal trichalcogenide family with their 

rich variety of properties. Thin films produced from 

these dispersions possess excellent characteristics of 

transport and charge carrier mobility making them 

promising candidates for future electronics. 
 

 
 

Fig. 1 – Structure of triclinic niobium trisulfide: a – two 

wedge-shaped columns of sulfur atoms with paired niobium 

atoms inside; b – the structure view on crystallographic ac 

plane demonstrating prism bonding into layers. 

 

2. EXPERIMENTAL 
 

2.1 The Synthesis of NbQ3  
 

The synthesis of triclinic NbS3 and monoclinic NbSe3 
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was carried out using high temperature ampoule method 

starting from high purity elements. The stoichiometric 

mixtures of Nb:Q=1:3 were loaded into ampoules which 

were evacuated to 10-5 bar, sealed under dynamic vacu-

um, heated in electrical furnace at 600°С during 160h, 

and then cooling to room temperature for 5 h. 
 

2.2 Preparation of Colloidal Dispersions of 

NbQ3  
 

Bulk powdered samples of NbS3 or NbSe3 (0.5 – 0.7 g) 

were sonicated in Elmasonic S40 ultrasonic bath (120 W) 

in 80–100 ml of organic solvents for several hours. The 

resulting mixtures were centrifuged at 2600 rpm at am-

bient temperature to remove large (heavy) particles.  

 

2.3 Preparation of Thin Films of NbQ3 
 

The films of NbS3 and NbSe3 were prepared from 

colloidal dispersions by their filtration using membrane 

filters Whatman Anodisc with pore size of 0.02 μm and 

by spray method. 
 

3. RESULTS AND DISCUSSION  
 

3.1 Preparation and Characterization of NbQ3 

Colloidal Dispersions 
 

Bulk samples of triclinic NbS3 and monoclinic 

NbSe3 were sonicated in a number of organic solvents 

(DMF, acetone, acetonitrile, water, ethanol, water-

ethanol 55/45 vol.% mixture, isopropanol or 1-methyl-2- 

pyrrolidone) in order to achieve exfoliation. NbQ3 con-

centration was determined by filtering the dispersions. 

and weighing of the filtered mass, or by UV-vis spectral 

analysis. Dynamic light scattering (DLS) measure-

ments yielded an average effective hydrodynamic di-

ameter of particles ~150-200 nm. High-resolution TEM 

images and associated Fourier transforms proved that 

the particles in dispersions retained good crystallinity 

with triclinic NbS3 or monoclinic NbSe3 cells undam-

aged during liquid-phase exfoliation process. 

 

3.2 Preparation and Characterization of NbQ3 

Films 
 

For integration of materials into nanotechnology de-

vices it should be in the form of thin films rather than 

bulk powder. As we have noted earlier, mechanical exfo-

liation of NbQ3 appears difficult due to their geometry, 

and in this work colloidal solutions were used for prepa-

ration of thin NbS3 and NbSe3 films. The films were pre-

pared by two methods: (i) filtration of colloidal disper-

sions through 0.02 o-

disc”; and (ii) spraying colloidal dispersions on heated 

substrates (~ 200–250oC). The later method is more flex-

ible as it allows to prepare coatings of different complex 

configurations. The thin films prepared by both methods 

are quite smooth and transparent. The films were stud-

ied by powder X-ray diffraction (PXRD), X-ray photoelec-

tron spectroscopy (XPS), Raman and IR spectroscopies. 

According to PXRD data, the films are characterized by 

strongly textured nature with high intensity of 00l Bragg 

reflections. This fact may be expected from general 

structural consideration, but experimental evidence of 

such oriented packing is important. Raman and IR spec-

tra of bulk powder NbS3, NbSe3 and thin films prepared 

from their dispersions are in close agreement with each 

other and with reported data. All methods, XRD, XPS, 

IR and Raman spectroscopies, confirm phase composi-

tion of the films: they are composed of well-crystallized 

trichalcogenide nanoparticles, which are highly oriented 

in the film along 00l planes. 

The measurement of transport properties of NbS3 

films was carried out in the temperature interval of 4.2 – 

500K using standard four-probe technique. Resistivity of 

NbS3 film grows exponentially with temperature de-

crease (Figure 2 a). This growth can be fitted by fluctua-

tion model of tunneling. 

The current-voltage characteristics ((Figure 2 b) of 

thin NbS3 film (~ 0.5–1 µm) deposited from colloidal dis-

persions by spray technology on a SiO2/Si substrate were 

investigated in transistor configuration with the use of 

Si substrate as a gate. The electron (µe) and hole (µh) 

mobilities were determined as 1200 – 2400 cm2V-1s-1. 

High value of carrier mobility in NbS3 film exceeds simi-

lar characteristics measured on MoS2 single- and multi-

layers mechanically exfoliated from bulk MoS2 crystals. 

This is an important property for use in field-effect tran-

sistors since film production from colloidal solutions is a 

simpler and more practical technology comparing to me-

chanical exfoliation of single crystal samples. 

 

 
 

Fig. 2 – a – temperature dependence of resistivity vs. reciprocal temperature for NbS3 film in coordinates ln[ (T)] - Tt/(T+TS). The 

straight line is an approximation by equation σ(T)= σtexp[Tt/(T+TS)], were Tt.= 1384 K (0.12 eV), TS.= 80 K (0.007 eV); b – IDS (VG) 

characteristics for NbS3 films obtained from an alcohol/water solution measured with used of Si substrate as a gate. 
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4. CONCLUSIONS 
 

We have suggested to reconsider transition metal 

trichalcogenides with quasi-one dimensional electrical 

properties as novel layered species for nanotechnology 

and demonstrated their exfoliation in common organic 

solvents. Thin films of NbS3 in the form of ~ 1 – 4 layer-

thick high-quality crystalline nanoribbons with ad-

vanced characteristics for field-effect transistors were 

prepared: electron and hole mobility was estimated as 

1200 – 2400 cm2V-1s-1. We believe that this work pre-

sents a fresh view on the family of transition metal 

trichalcogenides and opens up a wealth of new oppor-

tunities with potential in future nanoelectronics and 

other technological areas yet to be discovered.  
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