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With the advent of the nano-era, a pronounced interest in the nanolayers has emerged. The develop-

ment of more and more sophisticated measurement devices and techniques made possible the visualiza-

tion, characterization and investigation of nanolayers. However, there exists a variety of simple, old means 

which should not be despised either. In this work, the use of contact angle measurement as a simple, fast, 

inexpensive and accessible tool for the study of surfaces with and without nanolayers is demonstrated. 

Furthermore, it is evidenced that in contrast to its simplicity, contact angle measurement can address sur-

prisingly complex questions and give proper answers to these. 
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1. INTRODUCTION 
 

Aluminium brass (Al-brass), copper nickel 70/30 

(CuNi) [1] and stainless steel 304 (SS) [2] are im-

portant alloys in the energy sector. Due to their good 

heat conductivity and corrosion resistance, the former 

two are often used as materials of the cooling circuits of 

power plants operating with seawater as a cooling 

agent, while SS is a common material of fresh water 

tubings. 

In the presence of microorganisms, all these alloys 

suffer, to some extent, from biofouling and the conse-

quent microbiologically influenced corrosion. Means to 

protect these alloys include dosage of biocides to control 

the growth of microorganisms and inhibitors for the 

corrosion protection. However, none of these are always 

successful. In severe cases, the developed thick biofilm 

can only be removed by manual cleaning, and during 

the maintenance shutdown of complete power plant 

blocks may become unavoidable [3–5]. 

Ultrathin organic protection layers, such as self-

assembled monolayers (SAMs) and Langmuir–Blodgett 

films have been proven efficient in laboratory experi-

ments against both the corrosion itself and the adhe-

sion of microorganisms [6–9]. However, their reduced 

stability in aqueous environment set a limit to their 

industrial applicability [10]. In the coating industry, a 

proper pretreatment of the respective surface to be pro-

tected is the prerequisite of the success of the coating 

procedure and the performance of the protection layer. 

However, thorough cleaning is often time consuming 

and costly.  

Similarly, in laboratory experiments with SAMs, 

surface pretreatment may be an important, but circui-

tous process step. It is therefore desirable to investi-

gate the necessity of it. 

Contact angle (CA) measurement is a basic tool to 

characterize surfaces. In spite of that it offers much 

useful information to be extracted from, generally it is 

applied to serve rather modest purposes only, such as 

differentiation between a hydrophobic and a hydro-

philic surface. 

Through our experiments, we attempted to answer 

the question whether CA measurements could be used 

in a more efficient way in order to obtain information 

about the success of the nanocoating procedure and the 

stability of the prepared layer, especially in conjunction 

with the pretreatment of the substrate surface.  
 

2. EXPERIMENTAL 
 

Aluminium brass, copper-nickel and stainless steel 

alloy specimens were of 10×12 mm2 dimension, and cut 

from standardized tubes [1–3], therefore being curved, 

with approx. 12.7 mm (0.5 in) radius of curvature. 

Octadecanoyl hydroxamic acid (C18N) was synthe-

sized from hydroxylamine and the appropriate acyl 

chloride. Octadecyl phosphonic acid (C18P) was synthe-

sized in a Michaelis–Arbusov reaction. The products 

were re-crystallized and characterized by melting 

points, elemental analysis, infrared spectroscopy and 

thin layer chromatography. 

As substrate cleaning, 10 min. sonication in spectro-

scopic grade acetone was applied, occasionally complet-

ed by 20 min. cleaning in ozone generated under an UV 

lamp. 

SAM coatings were prepared by dipping the pre-

treated metal samples into 2.0 mM solutions of the film 

forming compounds (C18N, respectively C18P) in chlo-
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roform, dichloromethane, or tetrahydrofurane. Dipping 

times were 1, 5 and 24 h in the case of the alloys. The 

coated samples were rinsed with the respective solvent 

in order to remove non-specifically bond excess material 

and were dried in air or in a stream of nitrogen. 

The alloy samples, with and without coatings, were 

characterized by their advancing and receding CAs. 

Static sessile drop measurements were carried out us-

ing a home-built measurement device equipped with a 

Hamilton micropipette and a CCD camera. For the dy-

namic Wilhelmy-type CA measurements a digital sur-

face tensiometer (Nima) was used. Samples were auto-

matically dipped into and pulled out from water with a 

rate of 10 mm/s, while the apparent weight change of 

the target sample was registered. The CAs were re-

trieved by inputting the cross sectional dimensions of 

the samples and the surface tension of the water. Ul-

trapure water (MilliQ) was used as a measurement liq-

uid in both cases. 

A stability test of the SAMs in flowing water was 

conducted for 2 weeks. Dynamic CAs were measured 

before and after the test. In this latter case the samples 

were first thoroughly dried. 
 

3. RESULTS AND DISCUSSION 
 

Dynamic CA measurements of as-received and 

cleaned samples showed the effect of the cleaning pro-

cedure (Fig. 1). Al-brass samples exhibited higher ad-

vancing and receding CAs than CuNi samples, which 

exhibited higher values than SS samples, both in as-

received and in cleaned  state. In this same order, the 

effect of cleaning became more and more pronounced, 

from about 20° advancing CA difference in the case of 

Al-brass, 30° in the case of CuNi and 35° in the case of 

SS. Similarly, the receding CA differences were 5, 15 

and 16° for the three alloy types, respectively. 
 

 
 

Fig. 1 – Advancing and receding CAs of as-received vs. 

cleaned alloy samples, averaged for 4 parallel sample of each 

type, measured in 6 consecutive dipping cycles in a Wilhelmy-

type dynamic measurement 
 

The change in the CAs during the consecutive dip-

ping cycles was spectacular (Fig. 2). In the case of the 

as-received samples, advancing CAs initially increased, 

while receding CAs monotonously decreased in each 

new cycle. Contrarily, cleaned samples showed not only 

lower CAs, but also much more stable ones. 

When the effect of the cleaning on the C18N-SAM 

formation was studied, it was found that after the com-

plementary UV cleaning step the static CA of all alloy 

types decreased approx. to the same value (32-35°), as 

an indication of a more pronounced hydrophilicity. 

When SAM preparation was carried out after this UV 

step, the high CAs on Al-brass and SS (90°) indicated 

the formation of a SAM. However, in the case of 

Al-brass, SAM preparation proved to be successful also 

when performed after a simple acetone-cleaning 

(CA  92°), apparently not effective in the case of SS 

(CA  66°). 

Wilhelmy-type CA measurement can be used in or-

der to learn about the short-term stability of such nano-

coatings, as suggested by our results (Fig. 4). When sub-

tracting the values of advancing CAs of the same sam-

ples obtained in two consecutive immersion cycles, a few 

degrees differences can be noticed, as already shown in 

Fig. 2. The difference depends on the alloy type and has 

a large statistical spread, but it is generally negative, 

i.e. the surfaces become slightly more hydrophilic after 

each new immersion step, as an indication that the 

structure of SAM layers is slightly altered in water. 
 

 
 

Fig. 2 – Advancing and receding CAs of as-received vs. 

cleaned alloy samples in the consecutive dipping cycles of the 

Wilhelmy-type dynamic measurement 
 

When these differences are plotted as a function of 

the preparation time of the SAM, a reasonable trend 

becomes obvious: the longer the initial SAM preparation 

time was (the time allowed the molecules to adopt the 

best possible arrangement on the surface), the lower 

this difference is during the immersions. The larger 

differences are usually measured for the uncoated con-

trol samples, as obviously the wetting of these ones pro-

gresses with the fastest rate.  
 

   Ac             Ac+UV          Ac+SAM    Ac+UV+SAM 

Al-brass  
          63                  32      92           90 

SS   
           56                 35      66           90 

 

Fig. 3 – The effect of surface cleaning on the C18N-SAM for-

mation, as revealed by static CAs (°) of different alloy surfac-

es. Ac: cleaned in acetone; Ac+UV: cleaned in acetone, fol-

lowed by an UV-cleaning step; Ac+SAM: SAM formation after 

acetone- cleaning; Ac+UV+SAM: SAM formation after ace-

tone- and UV-cleaning 
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In accord with these above facts, CA measurement 

proved to be effective also in the correct estimation of 

the long-term stability of these nanolayers. Layers pre-

pared for 1, 5 and 24 h respectively were measured in 

three consecutive cycles both before and after a two 

week long stability test in flowing water. Taking the 

after/before advancing CA differences in any measure-

ment cycle, we found very drastic CA decrease after the 

test, indicating a pronounced hydrophilicity originating 

from a pronounced layer alteration in the water (Fig. 5). 
 

 
 

Fig. 4 – Short-term stability of C18N-SAM coatings: wetting 

during Wilhelmy CA measurement cycles (advancing CA dif-

ferences between the second and the first immersion cycles) in 

function of allowed self-assembly time 
 

However, this lowering of the CA showed very 

strong dependence on the SAM preparation time. The 

layers allowed to build up for 1 h only showed the larg-

est CA fall (about 45-50°), the ones prepared for 5 h 

showed only 40°, while the ones assembled for 24 h 

showed only 25-30°. We found it particularly spectacu-

lar that these simple CA measurements could lead to 

the same conclusion as our previous, more sophisticated 

reflection absorption infrared spectroscopy (RAIRS) and 

sum frequency generation spectroscopy (SFG) investiga-

tions [10]. This fact points out the hidden possibilities 

laying in the CA measurements. 
 

 
 

Fig. 5 – Long-term stability of C18P-SAM coated Al-brass 

samples for 2 weeks in flowing water. After-before advancing 

CA differences in the 1st (light grey), 2nd (grey) and 3rd im-

mersion cycles (dark grey) as function of self-assembly time 

 

4. CONCLUSIONS 
 

The main conclusion of this work is that, as demon-

strated above, simple, fast, inexpensive and accessible 

CA measurements can provide answers to surprisingly 

deep questions. 
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