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CuIn1 – xAlxSe2 (CIAS) thin films were grown using flash evaporation method by varying the film 

thickness from 500 nm to 700 nm. Prepared CIAS thin films were annealed at 573 K for one hour in 

vacuum. The influence of film’s thickness and the annealing temperature were characterized by the X-ray 

diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive analysis of X-ray (EDAX), 

Optical transmission measurements, and Hall Effect measurement. As the film thickness increases the 

crystallinity improves and due to that the optical absorption also improves. The further improvement for 

different thicknesses of CIAS thin films were observed by annealing. The thicker (700 nm) and annealed 

CIAS thin film shows the crystallite size of 24.3 nm, energy band gap of 1.19 eV, and  resistivity of about 

9  102 Ω cm. 
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1. INTRODUCTION 
 

Copper indium diselenide (CIS) and its alloys, 
CIAS and, CIASSe, shows its potential towards the 

achievement of higher energy conversion efficiency at 

lower fabrication cost in the area of thin film solar 

cells [1, 2, 3]. The optical energy band gap of CIS in-
creases by substituting Ga / Al for In and S for Se, 

which is essential to enhance the photovoltaic conver-

sion efficiency in CIS based solar cells. For energy 
band gap greater than 1.3 eV the fill-factor and the 

open-circuit voltage of the solar cell reduces due to the 

degradation of the electronic properties of the absorb-

er [4]. Aluminum (Al) is easily available and less cost-
ly compared to Gallium (Ga). By alloying of Al to CIS 

the energy band gap changes from 1.0 eV (CIS) to 

2.7 eV (CuAlSe2), which can absorb most of visible 

radiation of solar spectrum. CuIn1 – xAlxSe2 (x  0.13) 

single junction solar cell exhibited an efficiency of 

16.9 % [5]. The tandem junction was proposed [6] to 
achieve higher photovoltaic conversion efficiency in 

CuInSe2 based solar cells as the calculated energy 

conversion efficiency for CIS (1.1 eV) / CIAS (1.7 eV) 
tandem cell was estimated to be 29 % [7]. CuIn1 –

 xAlxSe2 (x  0.13) chalcopyrite material is prepared 

and CIAS thin film of different thicknesses were 
grown by flash evaporation method. The post-

deposition annealing was carried out for the CIAS 

thin film of different thicknesses. The influence of the 
film thickness variation and the annealing tempera-

ture were observed by different methods like XRD, 

SEM, EDAX, optical transmission and electrical 

measurements. 

2. EXPERIMENT 
 

CIAS thin films were deposited by flash evaporation 

method on an organically cleaned, 3 mm thick, soda lime 

glass substrate. The CIAS compound was prepared by 

using the melt-quenching method, described elsewhere 

[8]. The substrate temperature was kept constant, at 

473 K, and varied the thickness of the CIAS thin film viz. 

200 nm, 500 nm and 700 nm. The deposition rate was of 

the order of 0.2-0.3 nms – 1
 and the thickness of CIAS films 

was measured using a quartz crystal thickness monitor 

(Hind Hi Vac. DTM-101). The thermal annealing was car-

ried out for all the different thicknesses of CIAS thin films 

at 573 K in rough vacuum for one hour. 

All the deposited and annealed CIAS thin films were 

characterized using HR-X-ray diffractometer (XRD) 

(Bruker D8-Discover) in 2θ range 20-70 at a scan rate 

0.02 s – 1 with Cu-Kα radiation source. The surface mor-

phology and chemical composition of the deposited thin 

films was studied using scanning electron microscope 

(Philips ESEM, 30XL) equipped with EDAX facilities 

operated at 30 kV with  standard ZAF quantification.  

The CIAS thin films were also characterized for op-

tical measurement at room temperature using Hitachi 

U3400 UV-VIS-NIR double beam spectrophotometer. 

Hall measurements were done to verify the conductivi-

ty type, resistivity, mobility, and carrier concentration 

of the deposited thin films. 

 
3. RESULT 

 

3.1 Structural Characterization 
 

There is an obtrusive betterment was clearly ob-
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served in the XRD spectra of CIAS thin films as the 

film thickness increases and by annealing, as shown in 
Fig. 1. All the films were found to be polycrystalline in 

nature, majorly oriented towards (112) plane of chalco-
pyrite structure. Since no PDF-ICDD data file is avail-

able for Cu(In, Al)Se2, we used Copper indium 
diselenide (CuInSe2) as the standard data [9]. Detailed 

study of crystal structure and phase composition of Fe 
and Au thin films was done in earlier studies. It al-

lowed us to pick deposition conditions so that all com-
ponents of systems have a crystalline structure and 

have not oxide phases. 
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Fig. 1 – The XRD pattern of the prepared CIAS thin films at 

different thicknesses (a) 200 nm (as-deposited), (b) 200 nm 

(annealed), (c) 500 nm (as-deposited), (d) 500 nm (annealed) 

(e) 700 nm (as-deposited) and (f) 700 nm (annealed) 
 

The XRD spectra suggest that the crystallinity in-

creases with increase in the thickness of the CIAS thin 

film. As the films thickness increases the intensity of 

(112) diffraction peak increases and the shape of the 

diffraction peak sharpens. The strain decreases with 

the increase of film thickness, which reflects the de-

crease in the cohesive force between film and substrate 

material. Therefore, we conclude that there is a de-

crease in the lattice imperfections with increase in film 

thickness and an increase in the crystallite size [10]. 

The average crystalline size (D) of all the deposited 

CuInAlSe2 thin films was evaluated from the XRD peak 

along (112) orientation by using Scherer’s relation [11] 

 
0.9

cos
D



 
  (1) 

 

where D is the crystallite size as measured perpen-

dicular to the reflecting plane, 0.9 is the Scherer’s con-

stant,  is the wavelength of the X-ray radiation,  is 

the full width at half the maximum intensity, and  is 

the Bragg’s angle. Various other structural parameters 

viz. dislocation density (δ), micro strain (ε), and the 

estimated number of crystallites (N) were observed [12] 

as a function of thickness have also been calculated 

using relevant formulae and are presented in Table 1. 

The film with thickness 200 nm showed a large 

FWHM because of the large misfit strain between the 

film and the substrate. Its value decreased gradually as 

the thickness of CIAS thin film increases. This result is 

attributed to the relaxation of the mismatch strain with 

the formation of misfit dislocation in the films [13]. 

Therefore, as the film thickness increases, the misfit 

strain decreases resulting in a better crystallinity. The 

annealed films also showed a decrease in the value of 

FWHM and an increase in the intensity as compared to 

the as-deposited films.  

 

3.2  Morphological Studies 
 

The surface morphologies of the CIAS films deposit-

ed at different substrate temperatures have been stud-

ied by using scanning electron microscope (SEM). Fig. 2 

shows the SEM images of the surface morphology of the 

CIAS thin films as-deposited as well as annealed at 

573 K in rough vacuum, having different thicknesses. It 

is observed that the surface morphology of the CIAS 

thin films varies with thickness as well as with anneal-

ing. For small thickness, SEM images present small 

nucleation sites because of the short time of growth. 

However, as the thickness increases, the grain size in-

creases, and the film morphology seems to be uniform 

with large grains. From the fundamental structure-

forming phenomenon, film growth evolves from nuclea-

tion islands to the growth of the continuous films, lead-

ing to large grains formed by the coalescence phenome-

non between grains [14]. 

 
3.3 Compositional Analysis 

 

In order to verify the composition of the deposited 

films, their compositional analysis has been made by 

using EDAX characterization. The values of the con-

stituent elements so obtained are presented in Table 2. 

At lower CIAS film thickness, there has been a defi-

ciency of selenium, which is due to its highly volatile 

nature and leads to degradation of the quality of the 

film [15]. However, the selenium composition is the key 

factor for device applications of undertaken films. 

Further, with the increment in the thickness of the 

film an improvement of selenium content in the film is 

observed and demonstrated its improved quality. It is 

seen that up to 500 nm we have observed the Cu-rich 

composition, however, as the thickness is increased to 

700 nm, the ratio of Cu / (In + Al) was found to be about 

0.73, i.e. Cu atoms are relatively small compared to 

(In + Al) while the ratio of (Cu + In + Al) / Se is close to 

unity. Since Cu-poor surface is beneficial for the overall 
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Fig. 2 – SEM micrographs of flash evaporated CIAS thin films of different thickness (a) 200 nm (as-deposited), (b) 200 nm 

(annealed), (c) 500 nm (as-deposited), (d) 500 nm (annealed), (c) 700 nm (as-deposited), and (d) 700 nm (annealed) 
 

Table 1 – Significant parameters obtained from XRD analysis 
 

Thickness 

(nm) 
Sample type 

FWHM  

(degree) 

Crystallite size, 

D (nm) 

Micro 

Strain, ε 

Dislocation 

Density 

( 1010 Lines/m2) 

Inter-planar 

Spacing, d 

(nm) 

No. of 

Crystallites 

N (1  1014) 

200 As-deposited 0.576 14.8 0.0024 0.00456 0.335 616.94 

200 Annealed 0.432 19.7 0.0018 0.00257 0.332 260.40 

500 As-deposited 0.513 16.6 0.0021 0.00363 0.336 1095.04 

500 Annealed 0.422 20.2 0.0017 0.00244 0.329 604.82 

700 As-deposited 0.399 21.4 0.0016 0.00219 0.332 717.27 

700 Annealed 0.351 24.3 0.0014 0.00169 0.331 488.44 

а b 

c d 

e f 
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performance of the film for device application [16]. Fur-

ther, it has been noted that annealing of the films im-

proves their quality. However, thickness beyond 

700 nm caused re-evaporation of selenium, thus, con-

firming 700 nm thick film suits to various device appli-

cations. 

 

3.4 Optical Characterization 
 

The optical transmission spectra of CIAS thin films 

with varying thicknesses have been shown in Fig. 3. 

The higher transmittance indicates a smooth surface 

and relatively good homogeneity of the thinner films 

and their results are consistent with the results of SEM 

analysis [17]. The transmittance of the films was found 

to decrease and absorbance was found to increase with 

increase in thickness. This is because of the reason that 

in case of thicker films more atoms are present in the 

film; thus, make more states available for the photons 

to get absorbed, thereby, increasing the absorbance of 

films with increasing thicknesses [18]. However, with 

the increase of film thickness, the scattering of the 

light also increases thus causing a loss to the coherence 

between the primary light beam and the beam reflected 

between the film boundaries and results in the disap-

pearance of the interference as well as reduction of the 

transmittance [18].  

The optical band gap Eg is estimated by using the 

following relation [19], 
 

  g

m
αhυ B hυ E   (2)  

 

where B is a constant, Eg is the band gap energy, h 

is the incident photon energy and m a constant which 

depends on the nature of the transition between the top 

of the valence band and bottom of conduction band. The 

lowest band gap energy in semiconducting materials is 

referred to as the fundamental absorption edge of inter-

band transition and is characterized by m. For the 

allowed indirect transition m  1/2, and for the allowed 

direct transition we have m  2. Fig. 4 shows the band 

gap spectra of annealed and as-deposited CIAS thin 

films of different thicknesses. The value of optical band 

gap energy for increasing film thickness from 200 nm 

to 700 nm has been found to be decreased from 1.44 to 

1.19 eV. In addition, annealing of the thin films 

improves their band gap value to 1.19 eV for 700 nm to 

1.25 eV for 200 nm thin films. The reduction in the 

band gap and sharpening of the band edge at the band 

gap region clearly shows the improvement in the film 

uniformity after annealing. On the other hand, the 

density of localized state in the film increases with the 

film thickness, which leads to a decrease in the energy 

band gap. In addition, the increase in particle size and 

decrease in strain and dislocation density may result in 

a reduction in band gap with increase of film thickness 

[20]. Many authors have reported such a variation in 

energy band gap with increase in film thickness [21]. 

However, a decrease in band gap of, less thick CIAS 

film, with annealing, is consistent with the fact that 

the crystallinity of the polycrystalline thin film im-

proves on annealing [22]. Fig. 5 shows the clear differ-

ence in the band gap values before and after annealing. 
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Fig. 3 – Optical transmission behavior of as-deposited and 

annealed CIAS thin films of different thicknesses 
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Fig. 4 – The energy band gap variation of as-deposited and 

annealed CIAS thin films of different thicknesses 

 

Table 2 – The compositions of the as-deposited as well as annealed CIAS films as detected by the EDAX analysis 
 

Element 

Composition (wt. %) 

700 nm 

(as-deposited) 

700 nm 

(annealed) 

500 nm 

(as-deposited) 

500 nm 

(annealed) 

200 nm 

(as-deposited) 

200 nm 

(annealed) 

Al K 6.54 6.59 2.70 5.15 3.25 3.73 

Cu K 20.01 20.61 20.26 22.20 20.56 21.87 

Se L 52.26 51.82 51.44 50.10 51.74 50.15 

In L 21.19 20.98 25.60 22.55 24.45 24.61 
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Fig. 5 – Variation  of  band  gap  (Eg) of as-deposited and
annealed CIAS thin film of different thicknesses

It is observed that by annealing the CIAS films, the
FWHM decreases while grain size increases. This in-
crease in grain size results in a decrease of band gap as
predicted by the following equation [23] and can be
correlated with the XRD data

2 2 2
( ) ( )

* * *
RY

/ 8

1 / 1 / 0.248
gap thin film gap bulk

e h

E E h R

m m E
(3)

where R is the radius of the grain size, m*e  the effective
mass of electron, m*h the effective mass of hole and E*RY
the strain energy.

With increasing thickness as well as annealing,
grain size increases, which results in the reduction of
strain energy due to the rearrangement of the atoms.
In this way, the grain boundaries are relaxed and elim-
inated. For thin films, the grains are under the influ-
ence of intrinsic stress that changes the optical proper-
ties of the film drastically. Stress is usually generated
due to defects, as well as the substrate and thin film
mismatch. The simple relationship between the intrin-
sic stress and grain size can be expressed by the follow-
ing equation [24]:

f / 1 fE D (4)

where  is the interaction potential across the grain
boundaries, Ef Young’s modulus, f Poisson’s ratio and
D the grain size. From this equation, it is clear that as
the grain grows and increases in size, the subsequent
thin films tensile stress decreases. This is because as
the grain grows, the grain boundaries that are relaxed
are eliminated, the atoms are rearranged and the
strain energy decreases. This will improve the optical
characteristics of thin films [24].

3.5 Electrical Characterization

It has been observed that the resistivity decreases
and the carrier concentration increases with the
increase in film thickness as well as with annealing.
These results show that the films with thickness of
700 nm exhibit the lowest resistivity and highest
carrier concentration, thus, implying these are most
conductive films. The decrease in resistivity with

increase in thickness as well as annealing has been
interpreted on the basis of grain boundary scattering
by  Wu  and  Chiou  [15].  It  has  been  reported  that  as
grain size increases with thickness and annealing, the
effect of grain boundary is reduced, which, in turn,
reduces the grain boundary scattering and increases
the carrier lifetime, and, consequently, reducing the
resistivity.

In addition, as per the grain-boundary carrier-
trapping theory [25], these (grain boundaries) act as
trapping centers and therefore hinder the transport of
charge carriers towards the interface. For this reason,
the density of grain boundaries should be low to reduce
the recombination rate and improve the quality of the
films and device performance. Thus, the improvement
in the conductivity with thickness and annealing is due
to the enhancement of grain size as seen in the XRD
spectra  and in  SEM images.  All  the  films exhibited p-
type conductivity as determiined on the basis of hot-
probe method. The variation of resistivity and mobility
with thickness for as-deposited as well as annealed
CIAS layer is shown in Fig. 6.
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Fig. 6 – The resistivity variation of as-deposited and annealed
CIAS thin films of different thicknesses

An optimization of the conditions of deposition of
CIAS thin films with regard to their electrical response
is required for their use in various device applications.
Hall effect measurements of CIAS thin films deposited
at 473 K having different thicknesses of as-deposited as
well as annealed were carried out by using silver paste
as a contact material and the results so obtained are
presented in Table 3.

4. CONCLUSION

The grain sizes increased while strain and disloca-
tion density decreased with increase in film thickness
as well as with annealing. Increase in the film thick-
ness and annealing has caused an increase in the elec-
trical conductivity of the deposited films. Out of all de-
posited films, the films with a thickness of 700 nm ex-
hibited the lowest resistivity, implying the most con-
ductive films due to the highest carrier concentration.
All the films exhibit p-type conductivity as depicted by
hot-probe method. The decrease in resistivity with an-
nealing can be explained by assuming that during the
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Table 3 – Room temperature electrical properties of as-deposited and annealed CIAS thin films of different thicknesses 
 

 

annealing process, the films had enough time for atom-

ic rearrangement within it. Further, films deposited at 

higher thicknesses exhibited comparatively low trans-

mission and high absorbance in the visible region, the 

absorption further improved with annealing. The band 

gap decreases with increase in films thickness; howev-

er, the value further decreased on annealing; 700 nm 

thick annealed films were found as best suited for vari-

ous device applications. 
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Thickness (nm) Sample Type 
Resistivity 

(Ω cm) 

Mobility 

(cm2/Vs) 
Carrier concentration (cm – 3) 

200 As-deposited 0.218 12.6 1.12E19 

200 Annealed 0.201 17.2 1.54E19 

500 As-deposited 0.164 22.2 2.2E19 

500 Annealed 0.126 27.7 3.11E19 

700 As-deposited 0.116 35.1 3.93E19 

700 Annealed 0.090 37.2 7.71E19 
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