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We present a highly-parallel implementation of the Langevin simulation method for modeling ferroflu-

ids on Graphical Processor Units (GPU). Our method is based on the Barnes-Hut algorithm. As a bench-

mark we use the straightforward 'all-to-all interaction' algorithm. The obtained results are in good agree-

ment with known theoretical model. With the proposed method we were able to follow the evolution of a 

system of one million interacting particles over long time-scales, the task hitherto is out of reach with the 

standard, CPU-based numerical schemes. 
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1. INTRODUCTION 
 

A system of N interacting particles is one of the 

most common set-ups in physics. Since analytical solu-

tions typically do not exist when the number of inter-

acted particles is larger then two, N > 2, the various 

numerical methods are used in order to get an insight 

in the dynamics of the corresponding system. The in-

teraction involves all the pairs of particles, and there-

fore the computational time and efforts scale like N2. 

This effect certainly constitutes a problem, and, in 

order to run big systems, researchers relied on big 

computers. Practically that means the use of large 

computational clusters consisting of many Central 

Processing Units (CPUs). Such clusters are physically 

big, expensive and consume a lot of electricity. Over the 

last decade, an alternative, Graphic Processing Units 

(GPUs), become more and more popular. GPUs, initial-

ly designed to serve as the data-pipelines for graphical 

information, posses a high level of parallelism, while 

being cheap (as compared to CPUs) and small. The 

high computation capability of GPUs is owing to their 

architecture, which represents a set of hundreds of 

computational cores (note that the best modern CPUs 

have typically up to 16 cores), which can perform com-

putations in parallel. Nowadays, the scientific GPU-

computing is used in many areas of computational 

physics, thanks to the Compute United Device Archi-

tecture (CUDA) developed by NVIDIA Corporation, 

which step simplified the development of programs for 

GPUs. 

 

2. MODEL OF THE DISPERSED FERROFLUID 
 

Theory of the continuous bulk ferrofluid is well-

developed within the concept of ferrohydrodynamics [1]. 

However, recently the aspects of the dynamics of confined 

ferrofluids attracted a lot of attention because of the 

promising potential of ferrofluids for biotechnologies and 

medicine [2]. In this context, the disperse structure of a 

ferrofluidic media certainly deserves an attention. The 

dynamics of a ferromagnetic particle, suspended in liq-

uid, can be described by a Langevin equation [3] that 

accounts for the long-range dipole interactions with other 

particles, caused by the particle magnetization, and for 

short-range steric repulsions, caused by the anti-

agglomeration coating. Here we use the simplest model 

and consider an ensemble of identical spherical particles 

of radius R, submerged into the liquid of viscosity . We 

suppose also that the hydrodynamic radius is equal to R, 

and every particle has a homogenous structure with 

respect to its inertia and magnetic properties. Therefore, 

the dynamics of i-th particle is determined by the follow-

ing equations 
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where i and  i are the azimuthal and polar angles of i-th 

particle;   t/Tch is the dimensionless time (Tch  

 R/ (3D/4 0)0.5;  is the particle material magnetization, 

0  4 10 – 7H/m is the magnetic constant, D is the 

material particle density); ui  mi/m is the dimension-

less magnetic moment (m  4 R3 /3  V , V is the par-

ticle volume); Γr  8 RTch/DV is the rotation friction 

coefficient; i  ri/R is the dimensionless radius-vector, 

which define i-th particle position; Γt  6 RTch/DV is 

the transition friction coefficient,  
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is the magnetic field, which acts on the particle, 

ij  i – j; N is the number of the particles in the en-

semble; 3 4ext exth Η is the reduced external field; 
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is the dipole force; and finally  
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is the force, which is modeling the repulsion. Here  

and  are phenomenological parameters, that define 

the depth of the potential well and distance between 

the particles centers, which corresponds to the minimal 

value of the Lennard-Jones potential, respectively. 

The random forces r ( ), and d, represent the parti-

cle interaction with heat bath, and are characterized by 

zero means and delta-like correlation functions 
 

 B( ) ( ) 3 ( ) ( , , )r r r chk T T , 

 B( ) ( ) 2 ( ) ( , , , )d d d chk T T x y z , 

 

where kB is the Boltzmann constant, T is the absolute 

temperature,  is Kronecker delta symbol, and ( ) is 

Dirac delta function. 

 

3. PARALLEL COMPUTATIONS WITH CUDA 
 

The most straightforward way to simulate ferrofluid 

dynamics is to use the so-called All-Pairs Algorithm, 

that takes into account interactions between all the 

pairs of the particles. The computation time in this 

case scales like O(N2),  thus making this brute-force 

approach not suitable for the numerical propagation of 

large systems, N >> 1.  

Computation time can be tangible decreased by im-

plementing the Barnes-Hut algorithm [4], which leads 

to the scaling of the computational time O(NlogN). The 

algorithm is based on the replacing of a group of parti-

cles by a pseudo-particle with integral characteristics 

of the group. If the group if far enough from the refer-

ence particle, then, instead of computing interaction 

between chosen particle and each particle in the group, 

it is reasonable to calculate the influence of the pseudo-

particle. The partition of the set of particles into the 

groups is performed in a hierarchical manner. The 

region where ferrofluid is located can be considered as 

a root cell, or a root group [4]. In 3d case the root cell is 

divided into 8 sub-cells, and each sub-cell is again di-

vided, etc., until every sub-sub-... -cell holds one or 

none particles. From every sub-cell we produce a pseu-

do particle has a magnetic moment u  equal to the sum 

of ui, that belong to the subcell. The position  of each 

pseudo particle determines as   i/N  (i  1,…,N ) 

Here N  is the number of particles in the subcell. 

The Barnes-Hut algorithm by the construction pos-

sesses a high-potential for parallelization [5] , but its 

implementation is quite challenging due to hierarchical 

tree it is based on. So we used recommendations in [5] 

to overcome these difficulties. 

Fig. 1 shows the efficiency of the Barnes-Hut GPU-

based algorithm. For the N  106 we observed a speed-

up of the order 6 105 as compared to the performance 

of the standard all-pairs algorithm on a CPU, and 

speed-up of the order 200 when compared to the all-

pairs implemented on a GPU. However, when the 

number of particles is relatively small, typically less 

than several thousands, the Barnes-Hut algorithm 

performs slower than the all-pairs  algorithm. This is 

because the tree-building procedure takes most of the 

computational time. 
 

 
 

 

Fig. 1 – Performance of different algorithms. 

 

4. TESTING OF THE DEVELOPED METHOD  
 

We performed simulations for the ensemble of ma-

ghemite ( -Fe2O3) particles,  by using Eqs.(1)-(3), with 

the parameters   3.1 105 A/m, D  5000 kg/m3, sus-

pended in a water of viscosity   0,89 10 – 3 Pa s.  

According to Shliomis [6], if the diluted (volume 

fraction  < 1 %) ferrofluid contains small particles for 

which the magnetic energy does not exceed the thermal 

energy, its magnetization is given by the Langevin 

function  
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The result of our simulation (see Fig. 2) are in a 

good agreement with Eq.(7), that is confirm the pro-

posed approach validity. The slight excess of the fer-

rofluid reduced magnetization over the Langevin func-

tion with  grows is explained by increasing of the 

dipole field component, that directed along the external 

field ext
zH . 

When the particle magnetic energy is larger then 

the thermal one, the ferrofluid response to the external 

field becomes more pronounced (see Fig. 3). At the 

same time, the role of interparticle interaction becomes 

more important. In particular, due to the antiferro-

magnetic coupling between the column clusters, and 

the formation of the ring-like clusters, the magnetiza-

tion of a dense ferrofluid can be several times smaller 

than the applied magnetic field. 
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Fig. 2 – The magnetization curve for diluted (  < 1 %) ferro-

fluid. N  106, T  298 K  

 

5. CONCLUSIONS  
 

We proposed the new, GPU-based approach to fer-

rofluid simulations. By using the the Barnes-Hut algo-

rithm, which takes into account both the nearest-

neighbor correlation and interaction of the remote par-

ticles, we have reached an impressive calculation 

speed-up. One of the intriguing perspectives for further 

studies is to explore the dynamics of ferroliquids in 

thin vessels, a problem which is very important in the 

context of biomedical applications. 

 
 

Fig. 3 – The magnetization curves for different volume frac-

tion, when a > 1. N  106, T  298 K 
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