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The principles of nanoengineering of metamaterials which support optical electromagnetic and elastic 

waves with negative group velocity are described. Extraordinary properties of nonlinear-optical energy 

transfer between contra-propagating short pulses of electromagnetic and elastic waves are investigated 

and prospective unique photonic devices are discussed. 
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1. INTRODUCTION 
 

Optical negative-index materials (NIMs) form a 

class of electromagnetic media that promise revolu-

tionary breakthroughs in photonics. The possibilities of 

such breakthroughs originate from backwardness, the 

extraordinary property that electromagnetic waves 

(EMWs) acquire in NIMs. Unlike in ordinary, positive-

index materials, the energy flow, S, and the wave-

vector, k, become counter-directed in NIMs that deter-

mines their unique linear and nonlinear optical (NLO) 

propagation properties. Backward waves (BWs) are 

also referred to as waves with negative group velocity. 

Usually, NIMs are nanostructured metal-insulator 

composites with a special design of their building 

blocks at the nanoscale that enables negative optical 

magnetism. Metal component imposes strong absorp-

tion of optical radiation in NIMs, which presents a ma-

jor obstacle towards their numerous prospective excit-

ing applications. Extraordinary features of coherent 

NLO frequency conversion processes in NIMs, which 

stem from wave-mixing of ordinary and backward elec-

tromagnetic waves (BEMWs), and the possibilities to 

apply them for compensating the outlined losses have 

been shown in [1-5] (for a review, see [5,6] and refer-

ences therein). Most remarkable feature is appearance 

of distributed feedback NLO behavior. It allows sharp, 

resonance type, increase of the conversion efficiency as 

function of the product of strength of the input EM 

field and the slab thickness, which is in strict contrast 

with the commonly known exponential growth in ordi-

nary PI materials. Essentially different properties of 

three-wave mixing (TWM) and second harmonic gener-

ation (SHG) have been shown [3, 5, 6]. 
 

2. RESULTS AND DISCUSSIONS 
 

In this work, novel concepts of NLO photonic mate-
rials are proposed, which support negative group velo-

city of EM or elastic waves and lay outside of current 

mainstream in fabricating plasmonic-based NIMs. 
They concern with the materials that support electro-

magnetic or vibration waves with negative group veloc-

ity. Energy flux, S, and wave vector, k, become counter-
directed in a media with negative dispersion 

∂ / ∂k  0, which is seen from the equation S  vgU, 

where U is energy density, vg  gradk(k). Such NLO 
materials enable greatly enhanced coherent NLO ener-

gy exchange between ordinary and BWs as applied to 

SHG, TWM- and four-wave mixing processes. Two differ-
ent classes of materials which support BWs are proposed 

and will be described: metamaterials with specially engi-

neered spatial dispersion of the nanoscopic building 
blocks, such as standing carbon nanotubes [7], and crys-

tals that support optical phonons with negative group 

velocity [8]. The possibility to employ ordinary, readily 

available crystals instead of plasmonic NLO NIMs is justi-
fied. Plasmonic NIMs are challenging to engineer that 

requires sophisticated techniques of nanotechnology. We 

show that extraordinary NLO frequency-conversion prop-
agation processes attributed to NIMs can be mimicked in 

the proposed fully dielectric materials. We also show that 

the detrimental effects of strong losses caused by fast op-

tical phonon damping can be eliminated in the short-pulse 
regime. Comparative analysis is given. 

Fig. 1a depicts metamaterial slab that can be 

viewed as a wave guide formed by a metal plate (bot-
tom) and by air (top) tampered by carbon nanotubes. 

Fig. 1b shows two modes supported by the metamateri-

al (waveguide). Frequency f1 correspond to positive and 

2f1 – to negative group velocities, both propagate with 
the same phase velocity. The latter indicates the possi-

bility of phase matching of SHG. 

Fig. 2 depicts dispersion of optical phonons v(kv), 
such as in calcite, and phase matching of ordinary, co-

propagating fundamental (l) Stokes (s) and backward 

elastic wave (v). Here, Si are energy fluxes and ki are 
wave vectors. 
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Fig. 3a (solid line) shows quantum conversion  

efficiency of stimulated Raman scattering (TWM) in 

the case of contra-propagating phase-matched ordinary 
Stokes and backward phonon waves. Dashed line 

shows alternative option of phase-matched  

co-propagating Stokes and phonon waves, which corre-
spond to standard SRS process. Great enhancement of 

the efficiency is explicitly seen in the first case. The 

possibility to tailor of duration and shape of the output 
pulses is seen. 

 

 
 

       
 

Fig. 1 – (a) “Nanoforest” made of carbon nanotubes and (b) 

phase matching of backward SH and ordinary fundamental 

EM waves propagating along axis x 
 
 

 

Fig. 2 – Negative dispersion of optical phonons and phase 

matching of ordinary fundamental (l), Stokes (s) and 

backward contra-propagating phonon (v) waves 

 

3. CONCLUSIONS 
 

In the conclusions, alternative approach to fabricat-
ing nanostructured metamaterials that enables coexist-

ence of ordinary and backward optical electromagnetic 

waves is proposed. The possibility of conversion of ordi-
nary EMW to the contra-propagating BEMW at its dou-

bled frequency is shown. Such metaslab can be viewed 

as a frequency-doubling NLO microscopic metamirror 

and optical data-processing chip. Especially interesting 

unparallel properties appear attributed to short pulse 

regime. A class of readily available crystals is proposed 
that allows mimicking extraordinary NLO propagation 

processes commonly associated with plasmonic negative-

index metamaterials. Here, optical phonons with nega-
tive group velocity are proposed to replace EMW in the 

frequency domain of negative refractive index. The pos-

sibility to greatly enhance Raman amplification and to 
eliminate the detrimental effect of phonon damping is 

shown making use of short pulse regime. The concepts of 

unique ultracompact photonic devices such as data pro-

cessing chips, microscopic modulators, amplifiers, oscil-
lators and nonlinear-optical sensors are discussed. 

 

  
 

  
 

Fig. 3 – (a) Quantum conversion efficiency vs. energy of 

femtosecond pump pulses. Solid line – in the proposed 

coupling scheme, dashed line – standard coupling scheme. (b)-

(d) Changes in the shapes of generated Stokes (solid line) and 

transmitted fundamental (dash line) output co-propagating 

pulses with the increase of energy of the input fundamental 

pulse. ηq is corresponding conversion efficiency, τp – duration 

of the input fundamental pulse 
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