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Carbon nanotubes (CNTs) are hardy and versatile, with remarkable material and electronic properties. 

They could be also useful in some extreme conditions as well, when using a CNT as a shotgun barrel to 

shoot a beam of protons. The scheme nests two small hydrogen-rich fragments — which could be water ice, 

paraffin, or some other low-Z material — within a larger CNT that has gold atoms chemically adsorbed in 

its wall. The assembled structure is then zapped from the side with an ultraintense femtosecond laser 

pulse. The laser partially ionizes the gold and fully ionizes the hydrogen and carbon in the assemblage. 

After a few swings of the laser's electric field, significant numbers of electrons are blown off and form a 

cloud around the CNT. The now highly ionized coaxial structure generates a Coulomb potential in which 

the protons from the nanotube accelerator are squeezed toward the axis and accelerated out both ends of 

the CNT. The simulations indicate that even a non-optimized setup can produce highly collimated beams 

of nearly monoenergetic protons — 1.5 MeV for the parameters used. Such beams are of great interest in 

fields as diverse as medicine, fusion energy, and materials engineering. 
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1. INTRODUCTION 
 

In the past decade, ion acceleration driven by ul-

traintense femtsecond laser pulses has been inten-

sively studied, because a number of future applica-

tions are expected, including cancer therapy [1], 

compact neutron sources [2], and ion-driven fast ig-

nition [3] for medicine, industry, and fusion energy, 

respectively. For practical use of the accelerated 

ions, it is crucial to produce high-quality beams that 

are monoenergetic and collimated [4-6]. So far, work 

on the generation of quasimonoenergetic ions has 

been mainly based on a planar geometry. Other 

schemes with different geometries have been pro-

posed using, for example, double-layer targets [7] or 

gas jet target [8]. Ramakrishna et al. [9] reported 

experimental evidence for quasimonoenergetic spec-

tra of accelerated protons using water droplets. 

However, to produce high-quality ion beams is still 

in the process of research and development. An over-

all review on laser-driven ion acceleration has been 

recently published [10]. 

Carbon nanotubes (CNTs) [11] have extraordi-

nary properties with respect to their material and 

mechanical properties. Usually CNTs are used as 

solid-state devices operating at relatively low tem-

peratures and there have been no CNT applications 

at temperatures higher than 109 K and at time dura-

tions shorter than 10 fs. Here we propose an ion ac-

celeration scheme with the use of CNTs, working at 

such an extreme circumstance. In the present con-

cept dubbed a nanotube accelerator, a CNT, with 

fragments of low-Z materials embedded in it, is irra-

diated by an ultrashort intense laser to generate 

quasimonoenergetic collimated ion beams.  

 

2. NANOTUBE ACCELERATOR 
 

Figure 1 is a schematic of the nanotube accelerator. 

Inside the CNT, two smaller nanotubes are embedded. 

Typically the nanotube accelerator is irradiated by a 10 

– 20 fs pulse having a laser intensity of between 1017 

and 1019 W/cm2. The outer carbon nanotube is chemi-

cally adsorbed with heavy atoms such as gold, while 

the inner nanotube is made of light materials such as 

hydrogen and carbon to form the bullets. Upon laser 

irradiation, electrons inside the nanotubes are ejected 

within a few laser cycles (comprising the small white 

particles around the nanotubes). The remaining nano-

tubes composed of positive ions generate a characteris-

tic electrostatic Coulomb field so that the inner ions are 

accelerated along the axis symmetrically toward both 

ends of the outer nanotube. As a result, a pair of qua-

simonoenergetic collimated ion beams are obtained. 
 

Fig.	1	


 
 

Fig. 1 – Schematic view of a nanotube accelerator 

mailto:Murakami-m@ile.osaka-u.ac.jp
mailto:mtanaka@isc.chubu.ac.jp


 

M. MURAKAMI, M. TANAKA PROC. NAP 2, 04NEA05 (2013) 

 

 

04NEA05 -2 

This ultrashort pulse duration corresponds to the 

characteristic time of a Coulomb explosion [12-15] 

which is of the order of 2 / pi where pi is the ion plas-

ma frequency. Under such conditions, low-Z materials 

such as hydrogen and carbon are fully ionized, while 

materials such as gold are substantially ionized having 

Z  15 - 25 at laser intensities [16] of 1018 W/cm2. Sig-

nificant numbers of electrons are then blown off by the 

intense laser field within a few laser cycles. 
 

 
 

Fig. 2 – Characteristic Coulomb potential with a nanotube 

accelerator 

 

3. SADDLE-SHAPED COULOMB POTENTIAL 
 

Figure 2 shows a two-dimensional picture of the po-

tential (r, z) obtained numerically. In Fig. 2, the influ-

ence of the inner low-Z nanotube upon  is neglected 

because the total electric charge of the inner nanotube 

is much smaller than that of the outer nanotube. As a 

result of the saddle-shape potential, the interior ions 

get squeezed around the z-axis and accelerated along it, 

toward both ends of the CNT. Note that similar phe-

nomenon to the squeezing effect has been reported, in 

which an injected diverging proton beam is bunched 

(squeezed) in a mm-long hollow cylindrical target [17]. 

Here we note, if electrons are distributed inside the 

cylinder, an electric field toward z-axis is generated, 

which is expected to enhance the squeezing effect. 

In Fig. 2, some test ions (red dots) are also depicted 

schematically, how they are accelerated in the saddle-

shaped potential field. The outer and inner nanotubes 

thus play the roles of the barrel and bullets of a gun, 

respectively. At positions around the CNT center, the 

potential gradients are relatively small along the z-

axis. In other words, bullet ions initially located near 

the center will be accelerated quasimonoenergetically 

along the z-axis. It also turns out that the outer nano-

tube should not be too long, or L/R  O(1), where L and 

R denote the axis length and the diameter of CNT, re-

spectively. Otherwise the field inside the CNT is mostly 

null, leading to a degraded performance as an accelera-

tor. Meanwhile, heavy atoms such as gold, that are 

chemically adsorbed on the carbon atoms of the CNT, 

reinforce the gun barrel and considerably enhance the 

acceleration performance of the bullet ions. 
 

4. N-BODY SIMULATION 
 

We have performed N-body charged particle simula-

tions, in which all of the particle-to-particle Coulomb 

forces are computed exactly. The relativistic version of 

the Newtonian equations of motion are used, similar to 

molecular dynamics simulations of microwave heating 

of salty water and ice [18]. Moreover, our simulation 

includes the Lennard-Jones attractive potentials for 

pairs of like atoms, and repulsive potentials for other 

species as a core exclusion to avoid numerical diver-

gences. Such N-body simulations are the most suitable 

numerical approach for treating parametric domains in 

which the plasma scale becomes significantly shorter 

than the Debye length. Note that recombination is not 

included in the present numerical model, which is justi-

fied under such a circumstance seen in the present 

scheme that stripped electrons are distantly blown off. 

Figure 3 shows the temporal evolution of the dy-

namics of the nanotube accelerator, obtained from the 

N-body simulations. The CNT has an axial length of 

30 nm and a diameter of 15 nm at which the gold atoms 

are chemically adsorbed to the carbon atoms. Inside the 

CNT, two cylindrical bullet nanotubes made of hydro-

gen are embedded, each of which has a diameter of 

6 nm and an axial length of 6 nm. The initial distance 

between the two hydrogen bullets is 8 nm. Although 

hydrogen nanotubes do not actually exist in nature, 

that does not alter the physical mechanism of the nano-

tube accelerator, because the ionized bullets lose their 

original shape as they are squeezed toward the axis 

(see the time sequence of the top views in Fig. 3).  

Here we give a few descriptions from an engineering 

point of view: The use of pure hydrogen clusters as the 

bullets is unpractical, because solid hydrogen atoms ex-

ist only at extremely low temperatures at around 250 

degrees centigrade below zero. However, they can be 

easily replaced by such a hydrogen compound as water 

(H2O) or paraffin (CnH2n), that can be solid at room tem-

peratures. When such a compound is decomposed into 

fully ionized ions when irradiated by an intense laser, 

protons are to be selectively accelerated at higher quasi-

monoenergetic speeds [15]. Pure carbon compounds like 

fullerenes or CNT are also tractable materials for the 

bullet. Insertion of nanometer-size structures into CNTs 

is another key issue. For example, producing CNTs con-

taining fullerenes inside or multi-walled carbon nano-

tubes (MWCNT) has already been well established tech-

nically. Note that the size of the nanotube accelerator in 

Fig. 3 is the largest one that can be treated in our nu-

merical environment using real lattice constants for the 

materials. The total number of charged particles for our 

simulations is about 4 105. At t  0, sinusoidal laser light 

is incident on the nanotube from a radial direction per-

pendicular to the axis. The linearly polarized electric 

field is EL  E0 sin(2 T) for T  0, where T  t/t0 is the 

time normalized to the laser period t0  2.7 fs for a tita-

nium-sapphire laser at a wavelength of L  0.8 m. In 

Fig. 3, the field amplitude is E0  3 1012 V/m, corre-

sponding to a laser intensity of IL  1018 W/cm2. At such 

an intensity, the gold atoms are photoionized to a state 
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of about ZAu  20 [16] while the carbon and hydrogen 

atoms are fully ionized to ZC  6 and ZH  1, respectively. 

Note that, in the present simulation, the averaged num-

ber of electrons that are effectively blown off from the 

nanotube is observed to be Zeff 17 - 18 per single gold 

ion. The maximum ion energy is expected to increase 

with the system size and laser intensity according to the 

principles of a Coulomb explosion [15].  

 
 

Fig. 3 – Snapshots of the nanotube accelerator dynamics at sequential times 

 

In Fig. 3, the four snapshots correspond to the dura-

tion of the first two laser cycles (T  2) at a constant 

increment of T  0.5. During the first cycle, many elec-

trons are ejected by the intense laser field, which are 

already driven far away at the snapshot times and 

cannot be seen in Fig. 3. Simultaneously, the saddle-

shaped Coulomb field of Fig. 2 forms to squeeze and 

accelerate the bullet ions along the z-axis. Quantitative 

performance is plotted in Fig. 4, where the spectrum of 

the kinetic energy component along the z-direction, z, 

is seen to form a sharp quasimonoenergetic profile at 

normalized times of between T  4 and 5. With the pa-

rameters that can be managed in our numerical envi-

ronment, the energy is limited to max  1.5 MeV. The 

acceleration distance is roughly the half of the outer 

nanotube 15 nm, that corresponds to an electrostatic 

force of the order of 1014 V/m, which is much higher 

than, for instance, a typical value expected in laser-

plasma wake-field acceleration [19]. As long as mono-

layered nanotubes (in two dimensions) are used, the 

achievable ion energy max is expected to increase line-

arly with the nanotube size L. If the nanotubes have a 

finite thickness (i.e., are three-dimensional), then one 

obtains another scaling law, max µ L2. Furthermore, if 

the hydrogen atoms are replaced by carbon atoms, the 

kinetic energy of each carbon ion increases to about 10 

MeV (the kinetic energy per nuclei is a bit smaller than 

in the proton case) for the same target structure as in 

Fig. 3, because the kinetic energy results from the ini-

tial potential energy which in turn is proportional to 

the electric charge. Note that for more practical simula-

tions one needs to take account of a realistic laser pulse 

shape with a smooth envelope. As a matter of fact, we 

have verified that a quantitatively similar result to 

Fig. 3 in view of the energy spectrum is obtained using 

a Gaussian pulse with a full width at half maximum 

(FWHM) of five laser cycles under the same peak in-

tensity. Retardation and magnetic effects in the elec-

tron-electron interactions will become crucial in the 

highly relativistic regime. However, working laser in-

tensities for the present scheme are expected to be IL  

1018 W/cm2, and the relativistic effects mentioned above 

are not crucial. 
 

 
 

Fig. 4 – Temporal evolution of the proton energy spectrum in 

the axial (solid curves) and radial (dashed curve at T = 5) di-

rections. The corresponding dynamics is shown in Fig. 3. 
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5. QUALITY OF THE PROTON BEAM 
 

A good measure of the collimation is the energy ratio 

between the axis and the radius. As was seen in Fig. 3, 

the bullet ions are accelerated with a good collimation 

along z-axis. This longitudinal kinetic energy is approx-

imately equal to the initial Coulomb energy, i.e., 

z  q(Q/X)out, where Q and X are the total electric 

charge and a characteristic length of the outer nanotube 

in the early stage of the Coulomb explosion, respectively; 

q is the electric charge of the bullet ion. The scale length 

X can be approximately given by X  min(R, L). Mean-

while, the lateral (radial) kinetic energy of the bullet ions 

is brought about mainly by their own Coulomb repulsion, 

i.e., r  q(Q/X)in, where (Q/X)in, is defined  quite in a 

similar manner to (Q/X)out but for the inner nanotube. 

Thus the energy ratio is estimated by z / r  (Q/X)out / 

(Q/X)in. In the case of Fig. 4, z  1.5 MeV and r  0.017 

MeV in the final stage of acceleration, so that z / r  85, 

which is rather close to a rough estimate obtained from 

the z / r  100. These values of z / r indicate a remarka-

bly high degree of collimation. If the accelerated protons 

are kept ionized in flight without recombination, they 

are subject to long-range Coulomb forces. It might then 

be conjectured that the collimation performance of the 

beams can be degraded even at later times. However, the 

size of the bullet materials at T  5 - 10 is already much 

larger than the initial size. In this stage, most of the 

Coulomb energy has already been converted into the 

kinetic energy, and thus the collimation will not be sub-

stantially degraded at later times. 

The energy coupling efficiency c is an important in-

dex of the ion beam generation from an engineering 

point of view. It is defined as the ratio of the integrated 

kinetic energy of the bullet ions to that of all the elec-

trons and ions at t ®¥ . The latter balances with the 

absorbed laser energy. In practical cases, the absorption 

efficiency of the system depends on how many nanotubes 

are in the focal region as well as the microscopic nano-

tube structure. In the present work, where the system is 

not optimized yet, the values of c are of the order of 1  

or less [20]. However, the energy coupling efficiency is 

expected to be substantially improved by optimizing the 

target and laser parameters. 

 

6. CONCLUSION 
 

We have proposed an ion acceleration scheme using 

structured nanotubes, that operate under irradiance of 

ultrashort ultraintense laser pulses, to produce high-

quality ion beams. Detailed three-dimensional particle 

simulation has demonstrated the generation of quasi-

monoenergetic highly-collimated 1.5-MeV proton beams. 

The present concept leads to a view of CNTs different 

from an existing one, that until now had only been con-

sidered to be solid-state devices. It has been demonstrat-

ed that spatial control in nano-scale fabrication is as 

effective as temporal control in femto-scale laser opera-

tion. For further practical studies of the present scheme, 

it will be crucial that multiple nanotubes are uniformly 

produced in size and uniformly arranged in direction. 
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