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1. INTRODUCTION 
 

The problem of determining the effective mechani-
cal properties of nanocomposites is widely discussed in 

the literature [1-4]. The present work contains the ana-

lytical solution of the averaging problem of the elastic 
properties of an anisotropic plate (substrate) stiffened 

by the regular system of nanorods. A nanorod is de-

fined as the discrete formation of atoms which intera-

tomic bonds are realized through the forces of their 
interaction. While the interaction between the nano-

rods takes place through the material medium (sub-

strate). Therefore, the nanocomposite mechanic prob-
lems can be set and solved using the structural theory 

of composite materials in the framework of continuum 

mechanics [5] taking into account certain mechanical 
characteristics of nanorods, which can be obtained, for 

example, by experiment or with the molecular dynam-

ics methods considering the different interactions. 
 

2. PROBLEM FORMULATION 
 

Let us assume that a regular (doubly periodic) sys-

tem of nanorods (nanotubes) has been grown on the 
substrate (Fig. 1) which is a thin anisotropic plate or 

film. Nanorods are directed along the axis 1Ox  and 

continuously bonded with a substrate. Let us denote 

the main structure periods with 1  and 2  (  1Im 0,  

   2 1Im / 0 ). The rods are placed along the parallel 

segments   ,k k kL a b ,  Im Im ,k k ka b h  1,k N  

their centres form doubly periodic point systems 

      1 20,5 k k ka b ih m n     , 0, 1, ...m n . We 

denote by   , 1,2ij i j  the average stresses acting 

in the domain occupied by this system. 

Within the framework of the line contact model the 

load from the substrate to the rod kL  in a point 0t  is 

transferred via the tangent contact force   ,k kq t t L . 

Composing the equilibrium equation of the rod element 

kL  in 1Ox  axis dimension, we express the normal force 

in it through the linear contact force  kq t . 

 

        
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Fig. 1 – Scheme of the regular structure 
 

In accordance with the line contact model, let us 

demand that the normal stress22 , displacements 1u , 

2u  and their derivatives be continuous and the stress 

12  be discontinuous along the segment kL . We have 
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where  
k

f  is a jump of function f  on kL , more 

precisely        
k

f f t f t  where the sign (  ) corre-

sponds to the lower edge of rod kL  while we are moving 

from its beginning ka  to the end kb ,   is the substrate 

thickness. The stresses and displacements in aniso-
tropic medium are defined by the formulas [5,6] 
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where v  – roots of characteristic equation 
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11 16 12 66 26 222 2 2 0s s s s s s . (4) 

 

The material elastic flexibilities ijs  are represented 

in the Hook's law for anisotropic body [6] 
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The resultant vector of forces, acting in the struc-

ture along the arc AB , is defined by the formula (per 
unit of the substrate thickness) 
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3. INTEGRAL REPRESENTATIONS OF THE 
SOLUTIONS 
 

Let us assume that  
 

 

     

     

   




 




 



   

   

    





*

*

ln ,
2

,
2

Im 0, Re Im ,

v
v v v v v v v

L

v
v v v v v v

L

k

z z A q t t z dt
i

z A q t t z dt
i

q t t t t t L UL

 (7) 

 

Where     ,v vz z - determined on the periods 

   11

v
,      2 22 Re Im ,

v
v  Weierstrass dzeta and 

sigma functions [7,8] in affine plane of vz , 

     ,k kq t q t t L  is unknown density that should be 

determined, the constants A  are to provide presence 

of average stresses  ij  in the structure, coefficients 


*  are defined based on conjugation conditions (2). 

According to Sokhotskiy-Plemel formulas [5], let us 

write down limiting values of the function  v vz  at 

the edges of segments kL . As a result we have 
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Where the upper sign refers to the upper (lower) 

edge of the segment kL  while we are moving from its 

beginning ka  to the end kb . 

Substitution of the limiting values (8) into Eq. (2) 
and taking into account Eq. (3) yields the system of 

linear algebraic equations of the Vandermonde type, 

which is uniquely solvable due to  1 2  [5]. 
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Thus functions (7) with coefficients 
* , determined 

by the system (9), provide conditions of continuous con-

jugation of the nanorod with the substrate. 

Let us determine the increments of the function 

 k kz  at the periods 1  and  
2


 . We deduce from 

Eqs. (7) with consideration of the quasi-periodicity of 

Weierstrass  zeta-function the following expressions. 
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It follows from the Eqs. (3) and (10) that the fulfill-

ment of the condition  0c  produces the doubly perio-

dicity of the stress field in the nanocomposite structure. 

Now let us demonstrate that the displacement vec-

tor and the main stress vector on arc AB  are qua-
siperiodic. For this purpose the increments of function 

   z  at the periods are deduced with respect to 

group property of sigma-function [7]. 
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The integral in (11) can be simplified, taking into 

account conditions  0c  and kh const , as follows 
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Hence it yields 
 

 

        

 

   



    

 

,

1

2

v v v
v v m v v v m v m

L

z z A l

l q t sds
і

  

 

Increments of the displacement and the resultant 

vector of forces in the arc are to be obtained from Eqs. 

(3), (6) with presence of the Eq. (12). We find out that 
 

 

        

        

2

1 2 1 2
1

2

1

, 2Re ,

, 2Re , 1

m

m

z v v
v v v m v m

z
v

z v v
v v m v m

z
v

u u p p A l

X Y A l





  

   









 

  





 (13) 

 

Considering the two latter equations (13), as well as 

formulas (6), the constants   1,2vA  can be calcu-

lated based on the condition of the existing of the me-

dium stresses   , 1,2ij i j  in the structure. Thus we 

have: 
 

   
2

22 1 1 1
1

2Re A l


 


    


    



 

STRUCTURAL MODEL OF NANOCOMPOSITE WITH ANISOTROPIC MATRIX PROC. NAP 2, 03NCNN34 (2013) 

 

 

03NCNN34-3 

 

  
 

  

2

12 1 1 1
1

11 12 2

2
( )
2 2

1

2Re

sin cos

2Re

A l

A l


  




  



     

    

   





  

 

 





(14) 

       
2

22 12 2 2 2
1

2Rectg A l
 

 


      


     

 

After transforming of the first three equations in 

(14) we will find out that, 
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As the fourth equation in (14) is a linear combina-

tion of the first three equations mentioned above then 
the consistency condition of the system (14) should be 

written. 
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It  remains true due to the second equation in (9). 

 
4. SYSTEM OF INTEGRAL EQUATIONS  

 

 Let us define the deformation compatibility condi-

tions of the rods kL  with anisotropic substrate. Accord-

ing to Eq. (1) the rod deformation at the point 0 kt L  is 

to be written down as follows: 
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where ,k kE F  is the Young's modulus and the nano-

rod's cross-sectional area. 

The plate deformation along kL  is determined by 

formula (3) 
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Considering the equations (15), (17) and (18) we 

transform the deformation compatibility condition of 

the substrate - nanorods to the following system: 
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If m n  then the kernels  ,m okG s s  have singular-

ities of Cauchy type, therefore the system (19) relates 

to a class of singular integro-differential equation sys-
tems. 

The solution to such system is to be found in a class 

of unbounded functions at the ends of segments kL  [5]. 

Let us assume that 
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In accordance with (20) a unique solution to the sys-
tem (19) exists when the additional conditions take 

place: 
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Equations (21) are conditions of equilibrium of na-

norods. It should be noted that in case they are true, 
the system (14) will be automatically consistent. 

 
5. AVERAGING OF NANOCOMPOSITE 

ELEASTICITY PROPERTIES. 
 

Independently of a cell microstructure, the regular 
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composite and in the modeled homogeneous medium. 

As  result we have 
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where ije  and   are the averaged deformations 

and the averaged rotation of the fundamental cell, in-

crements of    z  function are determined in (12). 

Considering the Eqs. (22), (12) and Legendre rela-

tion [7,8] in affine plane:  
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the average deformations can be found: 
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Therefore, the average deformations depend upon 

the functional 2 il  determined on solutions to the sys-

tem (19), (21). 

Let us suppose that  0
kkq s  is the standard solution 

to the system corresponding to its right part 1f . In 

this case the common solution will be determined 
through the standard one as follows: 

 

           0
11 11 12 22 16 12k k kkq s s s s q s . 

 

and the functional 
 

 

 

 

11 11 12 22 16 12

0

1

2

k

k

lN

k k kk
k l

il s s s

q s s ds

     


 

  

  
, 24 

 

Then the Hook's law for nanocomposite macromodel 
can be obtained from (23), by entering the functional 

(24). It yields 
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Here the effective (average, macroparameters) 

characteristics of a structure are determined by the 

following equations: 
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6. NUMERICAL RESULTS 
 

A composite substrate – nanorods is considered. A 

substrate material is a silicon (Si). The fundamental cell 

is of square shape. The characteristics of substrate ma-

terial are 11 22 7.7s s   GPa-1 12 2.1s    GPa-1 [9]. 

The results of the calculations are represented in 

Figures 2. 
 

ij

ij

s

s

  
 

Fig. 2 – Dependence of the macroparameters  as function of 

rods length. The substrate thickness equals  150 nm (solid 

line) and   200  nm (dash line). 

The curves 1 (1’) and 2 (2’) are plotted for the ratio 

11 11a a  and 22 22a a . The calculations are given for 

the following parameters of the composite: the cell size is 

 1 200  nm and 2 200  nm, the relative rod length 

is   12l , Young's module of rods is 1000E GPa 

[3]. There are eight uniformly distributed nanorods with 

circle cross-section (  5R nm) in a cell.  

 
7. CONCLUSION 

 

The paper presents the model of the nanocomposite ( 

the doubly periodic system of nanorods (nanotubes) 

grown on a thin substrate) constructed by the regular 

structures method. The stated boundary problem about 

the compatible deformation of the rods and anisotropic 

substrate is reduced to the system of singular integro-

differential equations with elliptical kernels. The effec-

tive moduli of elasticity of such medium obtained in the 

closed form via functionals built on the solution of sys-

tem, containing the complete set of data about the ge-

ometric and physical properties of the nanostructure 

fundamental cell. As the result of numerical experi-

ments, the dependences of macroparameters via relative 

length of rod are received. In case the substrate thick-

ness equals to  150  (200) nm, the macroparameter 

11 11s s  ranges from 1.0007 to 1.6086 (1.4599) and mac-

roparameter 22 22s s  changes from 1.0001 to 1.0304 ( 

1.0252).  
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