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Tin oxide thin film was synthesized on glass and quartz substrate by sol-gel dip coating process taking tin 

(II) chloride as precursor and methanol as solvent. XRD study confirmed the tetragonal rutile structure of 

SnO2. It was concluded that the transmission was higher and grain size was bigger in case of quartz than 

glass substrate from the study of optical characteristics by UV/VIS Spectrophotometer and SEM micrographs. 

CO gas sensing property of SnO2 thin film was studied and it was revealed that the sensitivity of SnO2 thin 

film grown on quartz substrate shows better performance than the film grown on glass substrate under the  

same conditions. Sensitivity of the film to CO gas was measured at different temperatures and was found to 

be highly sensitive at 220 C for glass substrate and 210 C for quartz substrate, at 50 ppm concentration. 

The result of change in conductivity of the sensors in presence of CO gas was also reported.  
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1. INTRODUCTION 
 

In present days environmental pollution is a great 

concern among the researchers due to exhaust of com-

bustible and process gases mostly from industry and 

motor vehicles. It is very important to protect the envi-

ronment from those pollutant gases. To control and 

safely monitor the pollutant gases different methods 

like gas chromatography, FTIR spectroscopy, semicon-

ductor gas sensors etc. have been adopted by the re-

searchers. Solid state semiconducting gas sensors have 

substantial compensation than the other gas detection 

techniques. Generally semiconducting transparent ma-

terials with high transmittance, high band gap, re-

sistant to high temperature and mechanically hard are 

used for gas sensors.  Semiconducting sensors are reli-

able, easy to miniaturize, less costly, easy to produce 

and can be designed to operate over a wide range of 

conditions. Due to vibrant advancement of nanotech-

nology, especially on thin film technology, it has be-

come relatively easy to synthesize semiconducting gas 

sensors. Semiconducting gas sensors, also called as 

chemo-resistive gas sensors, are typically based on 

metal oxides. The rehabilitated interest of researchers 

in SnO2 which is based on metal oxide is due to its 

properties such as reflectivity, transparency, low elec-

trical sheet resistance etc. Tin oxide crystallizes in te-

tragonal rutile structure with unit cell parameters, 

which are a  b  4.737 Å and c  3.186 Å. It is a n-type 

semiconductor having high band gap energy (≈ 3.6 eV) 

[1]. It is more transparent in the region of visible spec-

trum due to high band gap, having high electrical con-

ductivity due to free electrons in oxygen vacancy holes. 

It is also hard and chemically stable due to which tin 

oxide thin films are of greater significance for the re-

searchers. Due to above properties, tin oxide thin films 

are not only used extensively for gas-sensing and gas 

monitoring devices [2-3], but also in transistors [4], 

protective and wear-resistant coating on glass contain-

ers [5], photovoltaic cell [6], transparent conductive 

electrode for solar cells [7], photochemical and photo-

conductive devices in liquid crystal display [8] etc. 

The current paper describes the preparation and 

study of sensing characteristics of tin oxide (SnO2) 

grown on both glass and quartz substrates. According 

to stoichiometry, tin oxide is an insulator at room tem-

perature. But when thin film of tin oxide comes in con-

tact with air, the surface of film absorbs oxygen [9] at 

grain boundaries which ensnared electrons and build a 

barrier around each grain [10], which behaves like dop-

ing, and produces ionization levels close to the bottom 

of the conduction band and finally exhibits the property 

of  n-type semiconductor. The gas sensing properties of 

tin oxide thin films have been performed for different 

gases like CO, NOx, H2S, H2, CH4 and CNG etc.[11-13]. 

Till today so many methods were adopted to synthesize 

doped or un-doped tin oxide films such as thermal 

evaporation [14-15], chemical vapor deposition [16-17], 

R.F. magnetron Co-sputtering [18], laser pulse evapo-

ration [19-20], spray pyrolysis [21-24] and sol-gel  

[25-27]. Among these techniques, sol-gel method play 

an important role due to several advantages such as 

simple experimental arrangement, easy control on film 

thickness with a high porosity area which can improve 

the efficiency of the sensors, less processing cost, greater 

homogeneity and more purity. In this study we espoused 

dip coating method. Starting from tin(II) chloride which 

is preferred due to low cost as precursor, methanol as 

solvent and glacial acetic acid as chelating agent,  trans-

parent solution was prepared and SnO2 thin film was 

synthesized on a glass substrate and quartz by sol-gel 

dip coating technique. Our main intention in this work 
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was to prepare SnO2 thin films by sol-gel method on 

glass and quartz substrates and to investigate the influ-

ence of the nature of the substrate on the optical, mor-

phological and CO gas sensing properties. 

Structural analysis of the films was carried out by 

XRD measurement using SIEMENS Diffractometer 

(Model D5000). The study confirms tetragonal rutile 

structure of SnO2 and the preferential growth along 

direction (101). The optical properties were studied by 

the equipment ELICO UV / VIS spectrophotometer 

(Model – SL-159) in the wavelength range from 300 nm 

to 1000 nm. The transmission graph showed that for 

nearly same thickness and under the same conditions 

the transmission was  higher in case of quartz than 

glass substrates and also band gap was less in case of 

quartz substrate. Surface morphology was examined 

from SEM micrographs by using Scanning Electron 

microscope (Model- Philips XL 30). Using both XRD 

and SEM it was observed that the grain size and strain 

of SnO2 thin film are larger in the case of quartz sub-

strate than glass substrate. Sensitivity analysis was 

done with the help of homemade equipment [28] and it 

was revealed that the sensitivity of SnO2 thin film 

grown on quartz substrate is more than the film grown 

on glass substrate at concentration 50 ppm. 

 

2. EXPERIMENTAL DETAILS 
 

2.1 Preparation of Solution 
 

1 gm of anhydrous tin (II) chloride (SnCl2) is dis-

solved in 50 ml of methanol (CH3OH) with 1 gm glacial 

acetic acid (CH3COOH) and stirred by a stirrer for 

45 minutes at NTP to get a clear and homogeneous 

solution. The glass and quartz substrates were thor-

oughly cleaned with cleaning liquid soap and then with 

acetone to remove organic particles on the surface and 

then washed with distilled water. The substrates were 

then soaked with TEA diluted isopropyle alcohol for 

10 minutes and then dried to prevent local hydrolysis.  

 

2.2 Preparation of Film 
 

Then the substrates were dipped in the prepared so-

lution by hand and withdrawn. The coated substrates 

were dried at 150 C in a muffler furnace for 1 hr and 

then heat treated at 300 C for about 15 minutes. The 

above procedure was repeated for a number of times to 

get the desired thickness. We repeated the procedure for 

six times to get a thickness of 645-650 nm in this study. 

After getting the required thickness the final heat 

treatment was carried for each substrate at 500 C for 

one and half hour in the muffler furnace in air. 

 

2.3 Gas Sensing Description 
 

The change of electrical properties of the metal-

oxide semiconductor due to adsorb gas molecules is 

responsible for SnO2 sensor response which is due to 

surface interactions between tin oxide and the sur-

rounding gases. The steps involved in sensor response 

to exposure to air and to a reducing gas, were described 

below. When thin film of SnO2 was exposed to air, oxy-

gen from the air is adsorbed onto the surface of the 

SnO2 thin film. Electrons from the surface region of the 

SnO2 are transferred to adsorbed oxygen, leading to the 

formation of an electron-depleted region near the sur-

face of SnO2 film. The electron depleted region, where 

electron density is less, is an area of high resistance 

and the core region of the film, where electron densities 

are high, is an area of relatively low resistance. Now 

the adsorbed oxygen becomes O and 2O
 species. When 

the thin film of SnO2 is exposed to a reducing gas like 

CO, surface reactions such as CO + 2O COads e    

and 2CO + 2, 2O 2CO 2ads e    took place. Due to 

which electrons release and the electrons released from 

surface reaction transfer back into the conduction band 

leading to decrease in the resistance or increase in con-

ductance of SnO2 thin film. 

Sensitivity test was carried out in a closed chamber 

containing heating element. Just above the heating 

element a polished iron slab (sample holder) with a 

thermocouple was placed. The sample was placed on 

the sample holder. Two conducting probes were placed 

on the sample at extreme ends of the film to measure 

the resistance at different temperatures. Before putting 

the sample on the sample holder it was heated to 300 C 

for 30 minutes to remove water vapor and then cooled to 

room temperature. Then resistance of the sample was 

measured with the help of Precision LCZ meter at differ-

ent temperatures of the sample. Carbon monoxide gas 

concentration of about 50 ppm was injected to the cham-

ber for measurement of resistance in presence of CO gas 

at different temperatures. 

 

3. RESULTS AND ANALYSIS 
 

3.1 Optical Measurement 
 

Optical characterization was studied from trans-

mission % vs. wavelength curve which was plotted from 

the data obtained from transmission spectrum analysis 

of the film by ELICO UV/VIS spectrophotometer  

Model- SL-159 in the wavelength range from 300 nm to 

1000 nm. The refractive index and the thickness of the 

film were calculated using the formula [29-30]. 
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Where ‘n’ and ‘d’ are the refractive index and thick-

ness of the thin film ‘’ refractive index of the sub-

strate; Tu and Tl are the transmission maximum at 

upper envelop and transmission minimum at lower 

envelop for a particular wavelength ; n1 and n2 are the 

refractive index of the thin film at maxima (for wave 

length 1) and corresponding minima (for wave length 

2) where phase difference is .  

The transmission % vs. wavelength curve was plot-

ted from the data obtained from transmission spectrum 

and is shown in fig. 1. From fig. 1 it is clear that the 

transmission of SnO2 thin film is very high in the visi-

ble region of the spectra, due to the fact that the reflec-
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tivity is low and there is less absorption due to excita-

tion of electrons from the valence band to conduction 

band. Fig. 1 also depicts the excellent surface quality 

and homogeneity of the thin film which substantiates 

the semiconducting properties of the film as it was es-

tablished by Nowak[31], that the pure semiconducting 

compounds have sharp absorption edge.  
 

 
 

Fig. 1 – T % vs.  in mm in the wavelength range 300 -1000 nm 
 

From fig. 1 it is obvious that transmittance is high-

er in case of quartz substrate than glass substrate. It 

may be due to high porosity and larger grain size and 

less absorption in the film deposited on quartz sub-

strate than glass substrate. It is also clear that trans-

mission values are more than 0.80 at wave length 

greater than 450 nm in both cases. From the transmis-

sion Vs. wavelength graph average refractive index and 

thickness were calculated as 2.07 and 2.13 are for glass 

and quartz substrates respectively. The smaller value 

of refractive index for glass substrate may be probably 

due to the increase of homogenity and surface smooth-

ness of the films due to smaller grain size in the case of 

glass substrate. 

From the transmission graph in the UV region the 

absorption coefficient () can be calculated from the 

expression [32] 1 1ln( )d T   , where ‘d’ is thickness of 

the film and ‘T’ is optical transmission. The calculated 

absorption co-efficient was about 104 cm – 1 for both the 

cases. The band gap [33] was calculated from the graph 

(h)1/2  vs. h in SnO2 thin film deposited on quartz 

and glass substrates. It has been observed that the 

band gap was 3.7 eV and 3.62 eV in case of SnO2 thin 

film deposited on glass and quartz substrates respec-

tively. This band gap value suitably matches the values 

given by J.E. Dominquez [34]. The smaller band gap of 

the film deposited on quartz substrate may be due to 

improvement of the degree of crystallization and 

growth of grain. 

 

3.2 Structural and Morphological Analysis 
 

The structure of the film was investigated by XRD 

which was carried out by Siemens Diffractometer  

Model D-5000 using CuKα having wavelength 

  0.1540 nm radiation with diffraction angle from 10 

to 70. XRD spectra of SnO2 thin film deposited on 

quartz and glass substrates using the above described 

technique are shown in fig. 2. 

 

 
 

Fig. 2 – XRD Pattern of SnO2 thin film deposited on glass and 

quartz substrates 
 

Fig. 2 clearly depicts well defined very narrow and 

sharp diffraction peaks which show higher crystalline 

quality of SnO2 film and are appropriately matched to 

JCPDS Card No. 88-0287 which shows the crystalline 

tetragonal rutile structure of SnO2. The well defined 

peaks which match the standard interplanar spacing 

was given as 26.6 for (110) plane, 33.9 for (101) plane, 

38 for (200) plane, 39 for (111) plane, 51.8 for (211) 

plane, 54.8 for (220) plane and 61.9 for (310) plane. 

The (101) peak has the largest intensity in both the 

cases, but others (101), (110), (200), (220) and (310) are 

also clearly detected. Since the intensity of (101) plane 

was higher it may be believed that the preferential 

growth along direction (101) hence Sn forms an inter-

stitial bond with oxygen and exist as rutile SnO2. There 

is a marked increase in the intensity of the X-ray dif-

fraction peaks in case of quartz substrate than as ob-

served in the glass substrate which may be due to addi-

tional nucleation centers for SnO2.  

Grain size of the film was calculated by using De-

bye-Scherrer formula and the average grain size of the 

deposited film was calculated as 48.54 and 51.27 nm 

for the film grown on glass and quartz substrates. This 

difference may be probably due to the presence of more 

strains in the film grown on quart substrate. 

Morphological study was conceived out from the 

SEM images of SnO2 thin film deposited on glass and 
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quartz substrates which were shown in fig. 3. SEM 

micrographs show agglomeration of the grain particles 

in both cases, but explicitly more in case of quartz sub-

strate. The SEM images clearly depict changes in mi-

crostructure and in grain size under the same condi-

tions. SEM micrograph of thin film made a conclusion 

that the grain size is little bigger in case of quartz sub-

strate due to the bigger size of domes in case of quartz 

substrate.  
 

 
 

 
 

Fig. 3 – SEM images of SnO2 film for quartz and glass sub-

strates 
 

The grain size estimated from SEM images was 

50.12 nm and 52.45 nm for glass and quartz substrates 

respectively. The result is a little bigger than the grain 

size determined by Debye-Scherrer formula. 

 

3.3 Sensitivity Analysis 
 

The gas sensing reactions are due to surface sensi-

tivity. The increase in surface area due to nanosize of 

the film increases the probability of the reaction and 

hence the sensitivity. The sensitivity of SnO2 gas sen-

sor is typically defined as the ratio of the surface re-

sistance (Ra) of the film in air to that in the target gas 

(Rg) i.e. Sensitivity  Ra/Rg, when thin film surface of 

SnO2 was exposed to air, due to adsorbance, electron 

depletion layer is formed where electron density is less 

and thus a layer of high resistance is formed and the 

adsorb oxygen remains in the form of O and 2O
 spe-

cies. So the high resistance of SnO2 thin film is present 

in air. When the thin film surface of SnO2 was exposed 

to CO reducing gas due to surface reaction more e  

were released. These released electrons transfer back 

in to the conduction band which increases the conduc-

tivity or decreases the resistance of SnO2 film. The sen-

sitivity of SnO2 thin film for carbon monoxide gas was 

studied at concentration 50 ppm. The variation of the 

sensitivity with temperature is shown in fig. 7. 
 

 
 

Fig. 4 – Sensitivity vs. temperature in C 

 

Fig. 4 shows clearly that maximum sensitivity occurs 

at temperature of 220 C for glass substrate and 210 C 

for quartz substrate. At low temperatures there is less 

oxygen coverage, when the sensor is exposed to air and 

therefore when the target gases are introduced there is 

negligible change in sensitivity. As the operating tem-

perature increases, the number of adsorbed oxygen spe-

cies would  react more and more electrons which are 

released due to this reaction  are sent back to conduction 

band i.e. the desorption rate of adsorbed gases also in-

creases with increasing of temperatures. As temperature 

increases further, more adsorbed oxygen species react 

and more electrons are sent back to conduction band 

leading to increase in conductivity. At 220 C, which is 

known as critical temperature Tc, almost all adsorb oxy-

gen species react and maximum electrons are sent back 

to conduction band leading to maximum sensitivity. The 

decrease in sensitivity for temperatures above the criti-

cal operating temperature, Tc, can be attributed to the 

higher desorption rates at these temperatures. When the 

target gases are introduced, the added desorption due to 

the target gases is relatively small for the steady-state 

desorption in air, leading to decreasing impact on the 

sensor response for T > Tc. Due to the competing rates of 

adsorption and desorption, tin oxide sensors always tend 

to exhibit maximum sensitivity at the particular operat-

ing temperature, called critical temperature. The critical 

temperature for the film grown on quartz substrate is 

 

 
 

Fig. 5 – Resistance vs temperature in CO gas 

a 

b 
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less than the critical temperature for the film grown on 

glass substrate. The higher sensitivity of SnO2 film 

grown on quartz substrate for CO gas may be probably 

due to greater adsorption of oxygen molecules. 

The graph which shows the relation between resistance 

of SnO2 film in the presence of CO gas and temperature 

is shown in fig. 5. It depicts that at low temperature less 

number of adsorbed oxygen species undergo desorption 

and less number of electrons which are released due to 

this, are sent back to conduction band resulting in high 

resistance of the film surface. As temperature increases, 

more adsorbed oxygen undergo desorption resulting in 

more electron in conduction band which leads to less 

resistance of the thin film. At critical temperature 

(220 C for glass substrate and 210 C for quartz sub-

strate) almost all adsorbed oxygen reacts and maximum 

number of electrons are sent back to conduction band 

resulting in minimum resistance of the thin film. Above 

the critical temperature the resistance of the film in-

creases which may be due to the fact that the added de-

sorption due to the target gases is relatively small for 

the steady-state desorption in air. 

 

 
 

Fig. 6 – Resistance vs time in CO gas 

 

The variation of resistance with time i.e. the re-

sponse time of the thin films is shown in fig. 9. The 

response time graph was plotted at 220 C for glass 

substrate and 210 C for quartz substrate. Figure clear 

shows that there is a rapid decrease in resistance of 

about 45 K Ohms (in case of glass substrate) and of 

about 48 K Ohms (in case of quartz substrate) in nearly 

100 second after injection of CO gas at 50 ppm, which 

clearly indicates that the rate of desorption is a little 

higher in case of SnO2 film grown on quartz substrate 

than glass substrate. 

Fig. 6 concludes that the response time is 20 sec (for 

glass substrate) and 18 sec (for quartz substrate) and 

saturation resistance of the film is achieved after near-

ly 100 sec in both cases which may be due to the fact 

that after 100 sec there will be no adsorb oxygen spe-

cies left for desorption.  

 

4. CONCLUSION 
 

Semiconducting tin oxide thin film was synthesized 

on glass substrate by sol-gel dip coating method. The 

thickness of the film was calculated as 645.98 nm using 

optical measurement. XRD study revealed the grain 

size as 48.5 nm and the product was of tetragonal ru-

tile structure. From SEM images it was concluded that 

the surface roughness of the film in case of quartz sub-

strate is higher. EDS result confirms the purity of SnO2 

thin film. The film was studied for carbon monoxide 

gas sensing. It was observed that the sensitivity of the 

film was higher at 220 C in case of glass substrate and 

210 C in case of quartz substrate using CO gas at con-

centration 50ppm. The study of response time analysis 

concluded that the response time was very high i.e. 

20 sec in case of glass substrate at 220 C and 18 sec in 

case of quartz substrate at 210 C using carbon monox-

ide gas at concentration 50 ppm. The given time is gen-

erally very short for gas sensing applications. Finally it 

was concluded that semiconductor metal oxide gas 

sensing thin film may be grown on the quartz substrate 

for better performance. 
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