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In this work, structural properties of magnesium oxide films have studied by X-ray diffraction methods. 

MgO obtained by spray pyrolysis technique at the different substrate temperatures on the glass sub-

strates. The 0.2 M magnesium chloride hexahydrate aqueous solution was selected as a precursor in the 

solution. The influence of substrate temperature on the phase composition, texture quality, coherent scat-

tering domain size and lattice constant of the material was investigated. The research results can be used 

in the development of functional layers of solar cells thin film. 
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1. INTRODUCTION 
 

Nowadays, oxide materials are widely used in the 
producing of integrated circuits, opto-, acousto- and 

microelectronics, solar energy and other areas of mod-

ern industry [1]. 
Magnesium oxide is one of the most wide band gap 

compounds of A2B6 group (Eg = 7,3 eV). It has a high 

melting temperature of 2800 0C, large yield of second-

ary electrons during the bombardment by ions [2]. Fur-
thermore it is stable at atmospheric. This led to the 

prospect of its use as an insulating coating of electrodes 

in magneto hydrodynamic devices, Josephson junctions 
and catalysis, insulating layer in magnetic tunnel junc-

tions, in plasma technology devices [3-10]. MgO thin 

films can also be used as anti-refrective layers of solar 
cells based on different absorbing materials. 

There are several methods of the preparation of 

MgO films and coatings, such as pulsed laser deposi-

tion, magnetron sputtering, electron beam evapora-
tion, metal organic chemical vapor deposition, spray 

pyrolysis, etc. [11-14]. Recently, much attention has 

been attracted to chemical methods of obtaining of 
metal oxides films, one of which is a spray pyrolysis 

technique. This method is one of the most prospective 

for the deposition of semiconductors thin films due to 

its simplicity and low cost, high speed of deposition 
layer and the possibility of obtaining condensates on 

large area substrates of different materials, because 

this technology is a non-vacuum. 
There are several groups of researchers from dif-

ferent countries involved to study of MgO films [15-

21], but the structural and substructural properties 
of  MgO films, obtained by spray pyrolysis method 

and their dependence on physical-technological con-

ditions of the deposition have, been insufficiently 

studied. Therefore, in this paper we investigate the 
impact on the structural properties of magnesium 

oxide films deposited from a magnesium chloride 

solution with different temperature with the same 
other conditions. 

2. EXPERIMENTAL DETAILS 
 

Investigated magnesium oxide films were obtained 
on glass substrates 2x2 cm2. Before deposition the sub-

strates surface were cleaned in the tub with ethanol for 

5 minutes. The 0.2 M magnesium chloride hexahydrate 
aqueous solution was selected as a precursor solution. 

It should be noted that in the most studies as a precur-

sor of the deposition of MgO films, there was used solu-
tion based on magnesium acetate or magnesium acety-

lacetonate [15-16, 18, 20-21]. 

The temperature of the synthesis of compounds was 

selected by the results of analysis of published data. In 
article [16] getting of magnesium oxide films was con-

ducted at the substrate temperature from 380 0C up to 

600 0C. The authors of [21] performed dispersion of 

precursor based on Mg(CH3COO)24H2O at substrate 

temperatures of Ts = 400 - 600 0C. In work [15] the sub-

strate  temperature for deposition of MgO films with an 
aqueous solution of 0.5 M magnesium acetate 

Mg(CH3COO)24H2O varied from Ts = 580 0C to 680 0C. 

In present work the films were deposited at the 
substrate temperature varied in the range from Ts = 

300 0C to 500 0C with step 50 0C, and from Ts = 370 0C 

to 420 0C with a smaller step  10 0C. 
The laboratory system, the schematic diagram of 

which is shown in Fig. 1, was used for spray the solu-

tion of precursors for the synthesis of magnesium oxide 
thin films. The laboratory system consists of a heater, 

with the help of which the steel plate with fixed sub-

strate is heated; a thermocouple for registering the 
values of the substrate temperature, a spray gun with 

diameter of nozzle 0.2 mm, comprising: a reservoir for 

the starting precursor and a atomization nozzle. The 

compressor, that provides air flow to transport dis-
persed precursor particles from the nozzle to the heat-

ed substrate, is connected to this gun. 

Substrates temperature during the obtaining of films 
was measured using а chromel-alumel thermocouple. 

The distance between the nozzle and the heated sub-

strate surface was equal to 12 cm. To transport dis-
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persed precursor particles, the air flow with a pressure 
of 0.2 MPa was used. Spraying rate was 2 ml/min at 

volume of sprayed solution of 3 ml per sample. 
 

 
 

Fig. 1 – Schematic diagram of experimental laboratory sys-

tem for obtaining MgO thin films by spray-pyrolysis tech-

nique. 
 

The laboratory system that was used for spray the 

solution of precursors for the synthesis of magnesium 

oxide thin films is more detailed described in work [22]. 
X-ray diffractometer DRON 4-07 in Ni-filtered Kα 

radiation of copper anode (U = 30 kV, I = 20 mA) was 

used to determine the structural properties. The meas-

urement was conducted in a range of 2θ angles from 
20° to 80°, where 2θ is Bragg’s angle. The Bragg-

Brentano focusing was used for research of x-ray radia-

tion. 
The curves were normalized to the peak intensity of 

the (200) cubic phase of the compound. Phase analysis 

was performed by comparing interplane distances and 
relative intensities of the researched samples and the 

standard according to JCPDS 

The texture quality of the films has been estimated 

by Harris method. Pole density was calculated by the 
following formula: 
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where Ii, I0i — integrated intensities of the i-th diffrac-

tion peak for the film sample and standard; N — the 

number of lines that are present on the diffraction pat-

tern.  
After then Pi – (hkl)i and Pi – φ dependences, where 

φ is the angle between the axis of the texture and per-

pendicular to different crystallographic planes, which 
correspond to reflections on the diffractograms, (hkl) — 

Miller indexes were made. This angle was calculated 

for the cubic lattice, using the expressions given in [26]. 
Texture axis has those indexes, which correspond to 

the largest value of Pi.  

The orientation factor of the sample can be calcu-

lated from the expression: 
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Calculation of the constants a and c of the hexago-
nal phase of the material was held by the formula: 
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The lattice constants were determined using Nel-

son-Riley extrapolation method [25]. The linear approx-

imation of obtained points was conducted using the 

method of least squares with the help of OriginPro 

software package. 

The average size of coherent scattering domains 

(CSD) L was determined by Scherer’s formula [24]: 
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where k — coefficient that depends on the shape of the 

particle (k = 1); λ — wavelength of X-rays; β — broad-

ening of the corresponding X-ray lines; θ — diffraction 

angles of the analyzed lines. 
 

3. RESULT AND DISCUSSION  
 

Visual inspection showed that the resulting films 
were optically transparent and uniform. 

Fig. 2 shows the diffraction patterns of MgO films 

deposited at substrate temperatures range: from 300 0С  

to 500 0С. Their analysis shows that at Ts = 300 0C 
films with the phase composition corresponding to the 

compound Mg2(OH)3Cl4H2O were grown. At other 

temperatures in the diffraction patterns there were 
found additional peaks at angles close to 12,300; 24,700 

and 31,600 that can be attributed to a hydroxyl com-

pounds of magnesium. This testifies to the incomplete 
transformation of precursors in necessary phase and 

necessity of post-annealing of patterns. Thus, layers 

obtained at the substrate  temperature range Ts = 380-

420 0C really have contained MgO with cubic modifica-
tion and with the preferred axial texture [111]. It has 

allowed to define temperature regimes for the obtain 

magnesium oxide films with nanocrystalline structure 
and to explore the films in more detail. 

 

 
 

Fig. 2 – XRD patterns of MgO films obtained at different sub-

strate temperatures Ts, 0C: 300 (1), 350 (2), 380 (3), 400  (4), 

420  (5), 450  (6), 480  (7), 500  (8).  
 

Fig. 3 shows the diffraction patterns of MgO films 

deposited at substrate temperatures range from 370 0С  
to 420 0С.  

In the diffractograms the lines at the angles of 



 

STRUCTURAL PROPERTIES OF MAGNESIUM OXIDE THIN FILMS… PROC. NAP 3, 01PCSI05 (2014) 

 

 

01PCSI05-3 

2θ=36.800, 42.840, 62.160, 78.440, which corresponded to 
the reflection from the planes of (111), (200), (220), (222)  

 

 
 

Fig. 3 – XRD patterns of  MgO films obtained at different sub-

strate temperatures Ts, 0C: 370 (1), 380 (2), 390 (3), 400 (4), 410 

(5) та 420 (6). 

 

of the MgO cubic phase respectively [23].  Phase analysis 

of samples was carried out using handbook (JCPDS card 

№ , 01-075-0477). In the diffraction patterns didn't lines 

of other phases observed, which testifies to the single 

phase character of samples, obtained in this tempera-

tures range. 

X-ray analysis showed that the dominant intensity 

has reflections from crystallographic planes of (111) and 

(200) of cubic phase of magnesium oxide, which indicates 

the presence growth texture [111] in films. Similar 

growth texture was also observed by other researchers in 

the works [17-19]. 

Calculations of pole density Pi and orientation factor 

f made it possible to determine the axial texture of 

growth in MgO layers [111] 

Appropriate dependences of film’s orientation factor 

on the substrate temperature at which they were ob-

tained are presented in Fig. 4 (inset).  
 

 
 

Fig. 4 – Pole density (Pi ) as a dependent function of the angle φ 

between the axis of the texture and normal to the reflecting 

plane at temperatures and orientation factor (f) for films ob-

tained at different substrate temperatures (inset). 
 

As can be seen from the figure, with increasing the 

substrate temperature, the corresponding value of orien-

tation factor also increases. This suggests that with in-

creasing the substrate temperature the quality of ob-

tained films’ textures increases. 

The dependence of the lattice constant of MgO on the 

substrate temperature during film deposition is present-

ed in Fig. 5. The dotted line in the figure shows the val-

ues given for this connection in the directory [23]. The 

method, that was used, allows to find the lattice con-

stant of materials with an accuracy of 0.001%. 
 

 
Fig. 5 – Dependence of lattice constants in MgO films on the 

substrate temperature.  
 

As can be seen from the figure, the lattice constant of  

MgO layer that was obtained at Ts = 370 0C, equal to a = 

0.42154 nm. These values are lower than reference ones 

[23]. After increasing substrate temperature to Ts = 390 
0C we observed a gradual increase in the lattice constant 

of the material (a = 0.42270 nm). With the further in-

crease Ts there took place decrease of lattice parameters 

of the material. But all of the obtained values well corre-

late with the values given in the reference (a = 0.42200 

nm) [23, 01-075-0447]. 

The results of calculating of the size of coherent scat-

tering domains in MgO films in directions perpendicular 

to crystallographic planes of (111), (200), (220) and (222) 

are shown in Fig. 6. 
 

 
 

Fig. 6 – Dependence of CSD sizes in MgO films on the sub-

strate temperature. Values for crystal planes 1 - (220), 2 - 

(200), 3 - (222) and 4 - (111) are presented. 
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It was established that the CSD sizes take the follow-

ing values in the respective planes: L(111) = 13-26 nm, 

L(200) = 11-16 nm, L(220) = 10-14 nm, L(222) = 10-16 nm.  As 

can be seen from the figure, there is a tendency to de-

creasing of CSD in their respective areas with increase 

of the substrate temperature. This indicates the deterio-

ration of the crystalline quality of the films. This trend 

was especially noticeable for directions of [111] (curve 4 

figure 6). 

It should be noted that the authors of [18] using the 

Sherrer’s ratio were obtained similar values of CSD sizes 

(L = 15 nm) for magnesium oxide films obtained from 

solutions magnesium acetylacetonate as precursor. Also, 

similar results L = 16 nm were obtained in [21]. These 

authors have synthesized films using hydrated magne-

sium acetate [Mg (CH3COO)24H2O] as precursor in eth-

anol with tri-ethylene glycol (TEG). 
 

4. CONCLUSIONS  
 

In the work we have investigated structural (texture 

quality, the lattice constant) and some substructural 

(CSD sizes) characteristics of nanocrystalline magnesi-

um oxide films which were obtained from the magnesi-

um chloride hexahydrate aqueous solution by spray py-

rolysis technique at the different substrate tempera-

tures.  

It is established, that the obtained films of MgO were 

optically transparent and uniform. 

X-ray diffractometric researches have allowed to es-

tablish, that MgO film obtained at the substrate tem-

perature Ts = 370-420 0C were single-phase and had 

cubic structure with a high-quoality texture growth of 

[111], the quality of which depended on Ts. The calculat-

ed values of lattice constant a = 0.4215-0.4227 nm, most-

ly correlate to reference ones. It was found the trend to a 

slight increase of a at the temperature of Ts = 370-390 
0C, with following decreasing of lattice constant at high 

temperatures. 

It was established that the CSD sizes in MgO films 

in directions perpendicular to the crystallographic 

planes of (111), (200), (220) and (222) were L (111) = 13-26 

nm, L (200) = 11-16 nm, L (220) = 10-14 nm, L (222) = 10-16 

nm. Thus there was a tendency to decrease the size of L 

with increasing temperature of synthesis of thin layers. 
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