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The paper describes a numerical method based on the Fourier transform application for studying prop-

agating optical waves in dielectric planar waveguides. The inverse problem to known direct one in wave-

guide investigation is proposed, namely a search of light wavelengths according to taken values of propa-

gation constants. For each constant a set of wavelengths is obtained, among which an input value of wave-

length in direct problem exists necessarily. A high accuracy of the method proposed is confirmed by exact 

values obtained by solution of transcendental dispersion equation. This method is tested on many exam-

ples, in particular, for waveguides of different permittivity profiles or modes of TE- and TM-polarization. 
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1. INTRODUCTION 
 

Planar waveguides are the basis of a number of in-

tegrated optics elements [1], including distributed feed-

back microlasers [2, 3]. For device designing based on 

planar waveguides, it is necessary to know propagation 

constants of waveguide modes which correspond to 

taken wavelength. A number of approximate methods 

are used to determine propagation constants of local-

ized modes of gradient planar waveguides [4], which for 

the first time have been developed for analysis the 

tasks of quantum mechanics. A typical permittivity 

distribution of symmetric gradient waveguide is shown 

in Fig. 1, where   0 


lim
x

x , ε0 is the substrate per-

mittivity, ε1 is the maximum value of permittivity in 

active layer. There are found exact analytical solutions 

for some profiles of waveguide permittivity ε(x) [1]. 

If, in this waveguide ε1 > ε0, propagating of localized 

waveguide mode with propagation constant β is possi-

ble, and electric field distribution is described by the 

following function: E(x,z) = E(x) exp(–iβz), where x and 

z are the transverse and longitudinal coordinates re-

spectively, E(x) is the electric field amplitude, i is the 

imaginary unit. But, even in the simplest case a search 

of propagation constant goes to solution of transcen-

dental algebraic equation. Problem becomes more 
 

 
 

Fig. 1 – An image of permittivity distribution for symmetric 

planar waveguide 

difficult if permittivity varies according to a complex 

function along axis x. Well-known methods to find 

propagation constants and waveguide mode fields are 

mostly analytical, too cumbersome, and their accuracy 

is low. These methods have been developed (in quan-

tum mechanics) when computers did not exist or were 

readily available. 

The current state of computer hardware and soft-

ware sophistication allows use numerical methods to 

search propagation constants and fields of gradient 

planar waveguides. It is known a numerical method for 

finding propagation constants based on wave equation 

Fourier transform [5], and it is characterized by high 

accuracy of analysis. By this method it is possible to 

find all propagation constants of localized modes and 

appropriate discrete Fourier transforms of field distri-

bution in a waveguide in one calculation cycle. The 

method is tested for many gradient waveguides. For 

example, let waveguide permittivity is described by a 

function ε(x) = ε0 + (ε1 – ε0)/cosh2(2x/d), where d is the 

thickness of active layer. Then for this waveguide, an 

exact analytical solution exists, and exact values of 

propagation constants are found [1], which are listed in 

the left column of table 1 for a waveguide with the fol-

lowing parameters: ε0 = 2.25, ε1 = 2.89, d = 5 μm, 

λ = 1 μm (light wavelength). At this wavelength wave-

guide has 13 guided modes. In the right column of the 

table 1, propagation constants calculated by numerical 

method described in [5] is shown. 

Propagation constants of waveguide modes calcu-

lated by both methods are the same, except the last 

which appropriate field has a maximum length in coor-

dinate space; so for it a small error is present. This 

numerical method provides high calculation accuracy 

and, as research shows, it is characterized by high nu-

merical stability. A search of propagation constants by 

numerical method [5] is reduced to the problem on ei-

genvalues (square of propagation constants) and eigen-

vectors (field discrete Fourier transforms in a wave-

guide) which look like as MV = β2V. 
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Table 1 – Propagation constants of planar gradient 

waveguide 
 

Index of 

propagation 

constant 

Propagation con-

stants obtained by 

exact method [1] 

Propagation constants 

obtained by numerical 

method [5] 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

10.5905815071 

10.4142208649 

10.2504427117 

10.0998591747 

9.9630685490 

9.8406460395 

9.7331338241 

9.6410307334 

9.5647819194 

9.5047689466 

9.4613007717 

9.4346060785 

9.4248280753 

10.5905815071 

10.4142208649 

10.2504427117 

10.0998591747 

9.9630685490 

9.8406460395 

9.7331338241 

9.6410307334 

9.5647819194 

9.5047689466 

9.4613007717 

9.4346060785 

9.4248273946 
 

In practice, it often happens that one needs to solve the 

inverse problem, i.e., for planar waveguide with certain 

parameters propagation constant is known, and it is 

necessary to find wavelengths that correspond to taken 

propagation constant. This problem arises in the anal-

ysis of waveguide distributed feedback lasers by cou-

pled wave method [2]. During the analysis propagation 

constants at which generation is possible are deter-

mined. Let’s show that this problem can be solved suc-

cessfully by numerical method based on wave equation 

in a frequency domain. The task is reduced again to the 

eigenvalue/eigenvector problem where square of wave-

lengths are eigenvalues: M1V = λ2M2V. 

 

2. ONE-DIMENTIONAL WAVE EQUATIONS AND 

THEIR FOURIER TRANSFORMS 
 

If, in a waveguide mode, electric field is perpendicu-

lar to plane xz (ТЕ polarization), wave equation will 

look like: 
 

 
 

     
22

2

2

2d E x
x E x E x

dx


 



 
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 

. (2.1) 

 

If, in a waveguide, TM polarization wave is propa-

gating, appropriate wave equation with regard to mag-

netic field H(x) can be written as: 
 

   
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22
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2
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 
. (2.2) 

 

Functions E(x), H(x) describing fields in waveguide 

localized modes and their first derivatives tend towards 

zero at x→±∞, and they are absolutely integrated. That 

is why for these functions, their first and second deriv-

atives the Fourier transform exists. One can write ap-

propriate equations for E(x): 
 

      2expE u E x i ux dx




  , (2.3) 
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 
2
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u E u i ux dx
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 




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where u is the spatial frequency, E(u) is the Fourier 

transform of electric field. 

Besides, for functions for which Fourier transforms 

exist, i.e., F{g(x)} = G(u), F{h(x)} = H(u), the next equa-

tion is yet right: 
 

         




 F g x h x G u v H v dv , (2.6) 

 

where F{…} is the Fourier transform. Equation (2.6) is 

named the convolution theorem. 

One takes Fourier transforms of left and right parts 

of (2.1) and (2.2) taking into account (2.3) – (2.6). As a 

result, we obtain next wave equations in a frequency 

domain: 
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The Fourier transform of permittivity is 
 

         0 1 0u x F f x       , (2.9) 

 

where δ(x) is the Dirac delta function, f(x) is the function 

describes permittivity distribution. 

 

3. A METHOD TO SEARCH WAVELENGTHS 

ACCORDING TO TAKEN PROPAGATION 

CONSTANT 
 

For demonstrating of method to find wavelengths cor-

responding to taken propagation constant β, let’s consider 

equation (2.7) as easier in the form: 
 

      2 2 2 2 24 4u v E v dv u E u    




     . (3.1) 

 

In (3.1) one can replace integral by sum and go to the 

equation in discrete form. By changing continuous values 

of u and v on discrete ones, we obtain: 
 

    
 

 1 2
2

1 2

4
/

/

N

k N

s k E k 

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        

 

    
22 2 24 s E s      

 
, (3.2) 

 

where N is the number of points in which electric field is 

sought, s and k are the indices on which summation is 

done: s, k ≤ |(N–1)/2|, Δ is the partitioning step of maxi-

mum spatial frequency umax: Δ = umax/N. Value of N 

should be taken large enough and unpaired. 

One can write the last equation for all discrete spa-

tial frequencies us = sΔ. Then a set of these equations 

will be written in a matrix form where λ2 is common to 

all values of index s: 
 

 21 2M V M V , (3.3) 
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where M1 is the square symmetric matrix of elements 

4π2ε(sΔ – kΔ), M2 is the diagonal matrix of elements 

β2 + 4π2(sΔ)2, V is the vector-column of elements E(sΔ). 

So, the problem was led to the problem on eigenval-

ues (square wavelength) and eigenvectors (discrete 

Fourier transform of field E(s)) which correspond to 

found value of λ2. By carrying out the inverse discrete 

Fourier transform of eigenvector, we obtain field distri-

bution E(x) in a discrete form too. 

Propagation constants βv of symmetric planar wave-

guide for taken wavelength λ satisfy the following ine-

quality: 0 12 2/ /vn n      , where n0 and n1 are the 

refractive indices of substrate and active layer respec-

tively. For the inverse problem wavelengths λv must sat-

isfy the following inequality accordingly known propaga-

tion constant β: 
 

 0 12 2/ /vn n      . (3.4) 
 

For all propagation constants from table 1 matching 

sets of wavelengths are found by usage matrix equation 

(3.3) and inequality (3.4). In each set a wavelength 

λ = 1 μm is present that confirms the correctness of calcu-

lations. If, we take arbitrary wavelength from each set 

and use the equation MV = β2V, we find appropriate 

propagation constant among set obtained again. A solu-

tion of both direct and inverse problems was carried out 

at next numerical process parameters: the number of 

points N = 2001, the maximum spatial frequency 

umax = 10 μm-1. They are selected from the subject to the 

Whittaker-Shannon sampling theorem. 

 

4. CONCLUSIONS 
 

The numerical method to find wavelengths which 

correspond to taken propagation constant of gradient 

planar waveguide is developed. The problem is reduced 

to the higher algebra problem on eigenvalues and ei-

genvectors like as M1V = λ2M2V. The method provides 

high accuracy of calculations, and it is characterized by 

numerical stability. 
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