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Formula for intrinsic stress calculation in coatings deposited from ion flux in the pulse potential mode 

is derived. The case of deposition of ions with different charges is taken into account. The criterion of ap-

plicability of derived formula is proposed which permits determining critical parameters of the pulse po-

tential mode. Calculation of stress in TiN coatings at deposition of low-energy ions Ti+ from filtered vacu-

um arc plasma is brought. The qualitative agreement of calculated stresses with experimental data is stat-

ed. The important role of deposition temperature for intrinsic stress control in deposited coating is noted.  
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1. INTRODUCTION  
 

Intrinsic stresses , arising in coatings at deposition 

of ion flux substantially determine operational charac-

teristics of obtained coatings. The simple formula for  

calculation was proposed in [1]: 
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where E is the ion energy, u is the activation energy of 

defect migration, EY and П are the Young's modulus 

and the Poisson's ratio of a target material,   is the 

ratio of fluxes of deposited atoms R and ions j. The 

number of thermoactivated transitions w0(E, u) caused 

by ion was calculated in the model of pointed thermal 

peak (PTP): 
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However, the use of the PTP model for description 

of stress relaxation contradicts to nonlocality of energy 

transition from ion to matter therefore it is incon-

sistent. Hereupon analytical curve fits experimental 

data at values of u = 3 – 11 eV, that multiply exceeds 

known values of activation energy of defect migration. 

Therefore, u is mere adjustable parameter in the Davis 

model [1] excluding its physical interpretation. Also, 

one should note inherent inconsistency of the model 

which is developed only for the case of zero tempera-

ture of target and for constant thermal capacity at the 

same time. The last condition contradicts to the Debye 

theory as experimental data. Hence, this model can not 

explain experimentally observed dependence of intrin-

sic stress on deposition temperature. 

The following modification of expression (1) was 

proposed in [2]: 
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The modified formula uses the model of nonlocal 

thermoelastic peak (NTP) for calculation of the number 

of thermoactivated transitions w(E,u,T0) produced by 

low-energy ion: 
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where kB  is the Boltzmann constant, n0 is the atomic 

concentration,  is the frequency of atomic oscillations, 

T0 is the substrate temperature, T is the temperature 

in NTP, V(t, E) is the NTP volume, and c is the life 

time of the NTP:  2~ 4c NTPR  , where RNTP is the 

radius of the NTP, and  is the thermal diffusivity [3]. 

At calculation the life time c is chosen on the basis of 

analysis of behavior of integrand depending on E and u 

values. 

The modified formula permitted explaining a set of 

regularities observing at deposition of carbon and BN 

coatings. The typical feature of these two cases is that 

deposited ions are the single charged ones. At the same 

time, the use of pulse potential mode for deposition of 

differently charged Ti+, Mo+ and other ions requires 

generalization of the theory of intrinsic stress in the 

coating. 

The goal of the work is to derive the formula for cal-

culation of intrinsic stress in coatings deposited in the 

pulse potential mode, taking into account differently 

charged ions. 

 

2. MATHEMATICAL MODEL  
 

Deriving formula for intrinsic stress we followed the 

reasoning used by C.A. Davis [1]. Intrinsic stresses 

arise as a result of two opposite processes: 1) subsur-

face ion implantation, leading to the emergence of vol-

umetric strain and compressive stress, and 2) decrease 
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of defect number due to their thermal migration in ion 

NTPs and drain to boundaries. The last leads to stress 

relaxation. 

In the pulse potential mode ions of two different en-

ergies  0 0E ie U U   and 0 0E ieU  are alternately 

deposited. Here E0 is the initial ion energy, U is the 

potential supplied to the substrate, U0 is the floating 

potential, e is the proton charge, and i is the charge of 

the ion in units of the proton charge. If the duration 

and the repetition frequency of high-energy pulses are 

equal to tp and f, respectively, then the duration of the 

period when the target is irradiated with low-energy 

ions is equal to 1
pf t   where 1

pf t  . In this case, the 

intrinsic compressive stresses which are established in 

the coating depend on the type of the coating occurring. 

Thus, if the pulse width is sufficiently large, then ma-

terial which is deposited during each pulse can be re-

garded as a solid layer of macroscopic thickness. The 

intrinsic stress in each layer should be evaluated using 

the expression (3), where E is the energy of the ions 

forming the concerned layer. In this case, the coating 

can be regarded as multi-layer sandwich, and the equi-

librium stress can be calculated taking into account the 

stress and the thickness of each layer [4]. However, if 

the effective thickness of each layer does not exceed the 

interatomic distance a, it is senseless to talk about the 

stress formation in each of these ‘layers’, because the 

size of the ion NTP is considerably higher than the lay-

er thickness [2]. In this case, we can assume that the 

coating is formed by a mixture of ions of two different 

energies (approximation of mixed beam), and the pro-

portion of ions with energies  0 0E ie U U   and 

0 0E ieU  is pft  and 1 pft , accordingly. Condition for 

the realization of the last case has the form: 
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Taking for estimations R= 5 mA/cm2 = 3·1016 cm-2s-

1, a  =2.5·10-8 cm, we get from (5): 0.05pt  s. In the 

pulse potential mode they use pulses with tp from 10 to 

30 s, so you can use the mixed beam approximation to 

describe intrinsic stress generation. 

The proposed model, as well as the Davis model [1] is 

based on the hypothesis of a linear relation between vol-

umetric deformation of solid films bombarded by energetic 

particles, and density of defects formed as a result of scat-

tering of primary ions and recoils on the target atoms. 

As was supposed in [5], the rate of formation of defects 

per unit area in  is associated with the flux density of 

bombarding ions j and with ion energy E by ratio 
1/2~in jE . We use some different function for in . It is 

given by a direct calculation using code SRIM2000 of the 

relative part ( )E  of ion energy E used to produce de-

fects. In accordance with definition of function ( )E , the 

expression for the rate of defect formation can be repre-

sented as: 
 

  ~i dn j E E E     ,(6) 

 

where   is the own contribution of the primary ion in 

the volumetric strain due to its implantation, Ed is the 

displacement energy for TiN. In the calculation we as-

sumed 25 eVdE  . 

If ions of two different energies are present in the 

flux, then equation (6) can be rewritten as: 
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where designation     dE E E E     is intro-

duced. 

Stress relaxation is determined by the number of 

thermally activated transitions of atoms in the ion NTP 

according to expression (4). The relaxation rate Rn  per 

unit area is proportional to the number of thermally 

activated transitions of atoms in the ion NTP 

 0, ,w E u T , to fraction of atoms which are in metasta-

ble states 0/n n , and to the flux of implanted ions j: 
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where n is the defect concentration. 

If the ion flux consists of ions of two different ener-

gies they produce NTPs of two different types, deposit-

ing various contributions to production of thermally 

activated transitions. With this in mind, the expression 

for Rn  takes the form: 
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Here and below we omit dependence of w function 

on parameters u and T0.  

Stress in the coating can be calculated based on the 

assumption that there is balance between processes of 

defects generation by ion implantation and their loss 

due to migration. 

The rate per unit area at which the defects are in-

troduced into the film, is equal to R(n/n0), where R is 

the total rate per unit area of attachment of atoms to a 

growing film. On the other hand, the resultant rate of 

introducing defects given by the difference between the 

rate of defect generation due to ion implantation and 

the rate of their loss due to thermally activated migra-

tion. Consequently, the condition of stationarity (i.e., 

constancy of defect density) leads to the relation [1]: 
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Substituting in  and Rn  in (10) and expressing the 

proportion n/n0 of the ions implanted in the film from 

obtained equation, we get: 
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According assumption, the volumetric strain   is 

proportional to the fraction of implanted atoms n/n0 in 

the film. In a case of thin coatings we have the next 

expression for compressive stress acting in the plane of 
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the coating 
 1YE  

. The result is: 
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If ion flux contains ions of different charge states, 

they will also gain different energy in the accelerat-

ing potential U and, therefore, are characterized by 

different abilities of defect generation and different 

rates of defect migration. Arguments similar to those at 

derivation of equation (12) lead to the following expres-

sion for intrinsic stress in the coating deposited from 

differently charged ions in the pulse potential mode:
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Here i  is the relative part of ions with charge equal 

to ie, and 1ii   . Assuming 1pft   we obtain expres-

sion for intrinsic stress in the case of the DC mode: 
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In the case of singly charged ion flux 1i i   and 

equation (14) is transformed into known expression (3). 

 

3. CALCULATION RESULTS AND DISCUSSION  
 

To calculate intrinsic stress in the TiN coating at 

ions Ti implantation, we used formula (13) where were 

taken ftp  0.12 and ftp  1 for modes of pulse and con-

stant potential, respectively. According to the data pre-

sented in [6], the ions Ti have charge from 1 to 3, at 

that 1  0.27; 2  0.67; 3  0.06. 

When calculating the intrinsic stresses in the de-

posited coating, it is necessary to consider the deposi-

tion temperature T0 which can significantly vary with 

ion energy because the ion flux heats the surface of the 

coating. One can show that in approximation of the 

linear heat equation with constant thermal conductivi-

ty in steady state deposition temperature T0 is associ-

ated with potential U by linear dependence 

   0 0 0 00T U q U U E T        where i
i

q e i   is the 

average ion charge (in considered case 1.79q e ), T00 is 

the temperature of unexposed substrate. Value  de-

pends on the technical parameters of the installation 

for coating deposition. In this study, it is chosen from 

the condition that the deposition temperature is equal 

to its experimental value at certain energy of deposited 

ions. In accordance with data given in [7], T(U  0 V)  

573 K and T(U  540 V)  873 K, that gives an estimate 

  0.3 K/eV. 

Fig. 1 shows the dependence of intrinsic stress on 

the substrate potential U in the coating TiN, deposited 

in the DC mode (curve 1) with parameters u  0.59 eV, 

U0  20 V, E0  40 eV, 0.3   K/eV, T(0 V)  573 K. 

Maximum stress m  6.6 GPa achieved at a poten-

tial U  50 V. The black circles correspond to values 

obtained in the experiment [7]. The dashed curve cor-

responds to stress in the coating deposited at lower 

temperature T(0 V)  473 K. As can be seen from the 

figure, reducing of the deposition temperature leads to 

significant increase in stress. 
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Fig. 1. Dependence of intrinsic stress in the coating TiN de-

posited in DC (curve 1) and pulse potential (curve 2) modes on 

the substrate potential U. 
 

Curve 2 corresponds to intrinsic stress in the coat-

ing TiN, deposited in the pulse potential mode with the 

following parameters: u = 0.59 eV, f  24 kHz, tp  5 s, 

U0  20 V, E0  40 eV, T(0 V)  473 K. The maximum 

stress m  10.2 GPa achieved at substrate potential U 

 430 V. The open circles marked stress values ob-

tained in the experiment [8]. The theoretical curves are 

normalized to the maximum value of stress obtained in 

the experiment in the pulsed potential mode. 

As can be seen from fig 1, there is qualitative 

agreement between theoretical curves and experi-

mental data. Particularly, maximum of (U) in the 

pulse potential mode shifts considerably in the range of 

higher ion energies compared with the case of DC 

mode, in accordance with experiments [7,8]. Observed 

discrepancy can be explained by inaccurate choice 

when calculating the values of the average charge q  

and initial energy E, compared with the real values. In 

addition, better agreement between calculated values 

of  and experimental data can be achieved by making 

small changes in the geometric parameters of the NTP. 

However, this goal was not intended in this study. Im-

portantly, the deposition in the pulse potential mode 

results in a significantly lower intrinsic stress than in 

the case of the DC mode at the same temperature. 
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4. CONCLUSIONS  
 

1. Within the model of nonlocal thermoelastic peak 

of low-energy ion the expression for intrinsic stress in 

coating deposited in plasma environment with simul-

taneous bombardment ion flux was obtained. The ex-

pression accounts for the presence of ions of different 

charges and is valid in the modes both DC and pulsed 

potential. 

2. Comparison of calculation results of intrinsic 

stress in TiN coatings deposited from the Ti ion beam 

with experimental data shows their qualitative agree-

ment. Deposition in the pulsed potential mode leads to 

significantly less stress than deposition in the DC mode 

at the same temperature. Pulse mode allows to produce 

coatings with low intrinsic stress at relatively low dep-

osition temperatures which eliminates the chemical 

decomposition and/or phase separation in the deposited 

coating. 
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