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Given the nanoscale point defects a transition from the solid state of the medium to state of ordinary and 

intermittent plastic flow was considered. Synergetic equations describing the self-organization of the particles 

and the vacancies of the system have been proposed. Phase diagram of the system and distribution function 

were constructed and analyzed.  
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1. INTRODUCTION 
 

Deformation of solids has attracted attention of en-

gineers, technologists and scientists for a long time [1]. 

The interest grows for a study of deformation of a con-

tinuous medium (granular materials, suspensions, etc), 

which are also characterized by elasticity and viscosity 

properties under certain conditions [2, 3]. But it is often 

necessary to know the subtle changes of the media (and 

increasingly at the nanoscale). Therefore, the task of 

studying the nano-level defects and their effect on de-

formation processes in solids and continuous media 

becomes actual. 

In this the study of plastic flow  a change of solid 

state under external load, accompanied by significant 

residual deformations without destruction   particu-

larly stands out.  But the theoretical description of 

plastic flow is a difficult task despite the fact that there 

is a huge amount of numerical and theoretical methods 

[4-8]. In standard approaches for crystals plastic de-

formation is usually associated with the emergence and 

evolution of the dislocations within the grains. For 

amorphous materials and continuous media the plastic 

flow theoretical description remains a difficult chal-

lenge. Since plastic flow originates at the nanoscale, we 

decided to abandon the standard consideration of linear 

defects and study the effect of point defects (e.g. vacan-

cies). Although for amorphous solids and granular me-

dium the concept of vacancies is unacceptable, but the 

description of the local free volume is possible [9]. 

Usually to characterize the plastic deformation the de-

pendence of the displacement (or strain rate) on the ap-

plied load is investigated. But since we want to investigate 

the effect of nanoscale defects, it is necessary to consider 

additional parameters and variables reflecting the pres-

ence of vacancies (in the case of crystalline solids). 
 

2. THE LOCAL FREE VOLUME 
 

The understanding of the basic laws of plastic flow 

can be achieved in the framework of the hydrodynamic 

theory [8,9], based on the parameter  
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where 0 ( , )n r t  – is the density of lattice sites, which 

depends on both the temperature and the strain, and 

( , )n r t is the number of particles per unit volume of 

material that depends from strain [8].  

For crystalline solids Eq.(2.1) equation is associated 

with the concentration of vacancies. But for amorphous 

solids and continuous media the density of lattice sites 

makes no sense, so we can use another interpretation.  

For crystals 0n  can still be interpreted as the density 

of particles, which will have a system with an infinite 

compression pressure at a constant value of the lattice 

constant. Accordingly, for amorphous solids 0n  can be 

defined as the particle density after compression with an 

infinite pressure at a constant distance to the nearest 

neighbor [9]. The last one, of course, is difficult to 

achieve experimentally, but nevertheless the accurate 

estimation of 0n  can be obtained under the condition 

that the compression is performed at a constant tem-

perature and that the distance to the nearest neighbors 

correctly determined. As a result, to determine the 0n  

at a given pressure P and temperature T with sufficient 

accuracy we can use the approximation [9] 
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where ,sr T P  is the distance between nearest neigh-

bors. Then, in general, the parameter m  may be de-

fined as the free local volume. 

Further, for simplicity, we will use the concept of 

vacancy concentration, but taking into account (2.2), all 

the results can be generalized to the case of a continu-

ous medium or amorphous materials. 

For the description of the plastic deformation the 

value of m  will be critical. Indeed, in the absence of 

vacancies ( 0n = n , m= 0 ) we have a solid state of the 

matter (the external stress gives rise to only elastic 

deformation); for the presence of vacancies 

( 0n < n , m 1) the external stress leads to plastic flow 

of the material. 
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3. EVOLUTION EQUATIONS 
 

The density and the momentum density is usually 

given by the dynamical equations [7, 10, 11] 
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where  is an average density of the material, ( rep-

resents its changes), 
t

u
v =  is the strain rate, σ is the 

elastic stress ( r ), 0  is the dynamic viscosity.   

Using the definition (2.1), the relationship of the 

strain rate v  and stress σ with the free energy, we can 

obtain [12] the equation  
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Here 0  is a kinetic coefficient, the free energy of the 

system  
 

 2 4
,

2 4

A B
F(m) = m + m  

 (3.4) 
 

has the Landau expansion form for the second order 

phase transition ( A > 0 ). 

As a result, we can describe the transition from a 

solid state to a plastic flow as self-organization of parti-

cles in a medium with a particular set of vacancies. 

Parameter m  can be chosen as an order parameter, 

which distinguishes the mentioned states.  

It is known that the Lorenz system is a simple 

scheme, describing the self-organizing system [13]. On 

an example of the self-organization processes in parti-

cle ensemble [14] and solids [15, 16] the system of syn-

ergistic equations for our case becomes 
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In contrast to equation (3.3) for the rate of change of 

the parameter m  we took into account additionally the 

microscopic dissipation channel ( mt  is a characteristic 

relaxation time) and the hydrodynamic contribution 

2v  ( 0mg  is the coupling coefficient, 0  is a 

kinematic viscosity). The strain rate v  plays the role of 

a conjugated field, and the stress σ is a control parame-

ter. The last one relaxes during time t to the value e , 

given by the external influences, ( ,g gv is a positive 

coupling constant). 

At the distances of particle size the fluctuations oc-

cur, so to account them we add in the last equation of 

the system (3.5) the stochastic source ( ) ( )I t t , 

which is characterized by intensity I  and white noise 

( )t : 
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Accounting that the relaxation time of the vacancy 

concentration is sufficiently larger than other time 

scales we can use an adiabatic approximation 
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As a result we can obtain the dependence of the con-

jugated field and control parameter: 
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Here we use dimensionless variables and the pa-

rameter  is given by 
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Further we use the notation 
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Substituting Eqs.(3.8) into the first equation of sys-

tem (3.5) we obtain the Langevin equation 
 

 ( ) ( ) ( )m m f m I m t , (3.11) 

 

which has a set of random solutions with distribu-

tion given by Fokker-Planck equation: 
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4. PHASE DIAGRAM AND PROBABILITY DIS-

TRIBUTION 
 

Let us investigate the stationary distribution case 

( 0P t ). Then the distribution of homogeneous so-

lutions of the Langevin equation (3.11) has  a form 
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where ( )U m  is an effective energy of vacancies and is 

defined by the equation  
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Fig. 1 – Phase diagram of the system at 
2

=2.  

 

Maximum of the distribution (4.1) is given by the 

system parameters and demonstrates the phase dia-

gram of the system (see Fig.1). 
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The corresponding dependencies of the distribution 

function of the vacancy concentration and the energy of 

vacancy formation are shown in Fig. 2. 

As seen from phase diagram three domains is real-

ized: the lower domain of the phase diagram character-

izes solid state, as evidenced by the distribution func-

tion (curve 1 in Fig.2a has a maximum value for zero 

concentration of vacancies); at the top domain the plas-

tic flow is realized (curve 3 in Fig.2a has a maximum 

for sufficiently large values of the concentration of va-

cancies); and finally the largest domain of the phase 

diagram corresponds to intermittent motion, when the 

distribution of vacancies has two maxima (curve 2 in 

Fig.2a). 

Thus knowing the external load and parameters of 

the medium and manipulating them we can achieve the 

transition from the solid state to the plastic flow or in-

termittent flow regime (the so-called stick-slip regime). 

 

                   

a)                        b) 
 

Fig. 2 – a) The dependence of the probability of  vacancies concentration at 
2

=2,  b) the dependence of the effective energy. 

Curve 1 corresponds to the values 5, = 7e I ; curve 2 – 2, = 1.5e I ; curve 3 – 6, = 3e I . 

 

5. CONCLUSION 
 

A result of the study it was shown that the descrip-

tion the intermittent plastic flow of the media is possi-

ble within synergetic representation. At the same time, 

not to limit the consideration by linear defects, the na-

noscale defects were taken into account, resulting in 

the concentration of point defects, which was taken as 

a basis of our analysis. 

The results obtained can be used for modeling the 

processes occurring during machining, surface treat-

ment selection modes in micromechanical technologies 

(grinding, rolling out the ball, and ultrasonic vibro-

treatment effects, etc.), in order to reduce errors in the 

experiments on friction coefficient, microhardness, ad-

hesion and others, as well as to predict the behavior of 

micromechanical systems.  

 

 

REFERENCES 
 

1. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Oxford: 

Elsevier: 1986). 

2. A. Liu, S.R. Nagel, Jamming and Rheology: Constrained 

Dynamics on Microscopic and Macroscopic Scales (London: 

Taylor and Francis: 2001). 

3. A. Ikeda, L. Berthier, P. Sollich. Phys. Rev. Lett. 109, 

018301 (2012). 

4. B. Devincre, L. Kubin. Mat. Sci. Eng. A 234-236,8 (1997). 

5. V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, S. Yip, 

Nature 391, No6668, 669 (1998). 

6. A. Artemev, Y. Jin, A.G. Khachaturyan. Acta Mater. 49, 

No7, 1165 (2001). 

7. A. Onuki. Phys. Rev. E 68, 061502 (2003). 

8. P.D. Fleming, C. Cohen. Phys. Rev. B 13, 500 (1976). 

9. C. Cohen, P.D. Fleming, J.H. Gibbs. Phys. Rev. B 13, 866 

(1976). 

10. K. Takae, A. Onuki. Phys. Rev. E, 83, 041504 (2011). 

11. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (New York: 

Pergamon: 1959). 

12. A. Onuki. Journal of Physics, 15, 891 (2003). 

13. H. Haken, Synergetic (Berlin: Springer: 1980). 

14. O.V. Yushchenko, A.Y. Badalyan. Phys. Rev. E 85, 051127 

(2012). 

15. A.I. Olemskoi, O.V. Yushchenko,. Physics of the Solid 

State, 53 No4, 845 (2011). 

16. O.V. Yushchenko, D.S. Trotskaya. Journal of Solid State 

Physics 2013, 604714 (2013). 


