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A new mass spectrometer based on charge detection has been developed. It enables the determination 

of mass distribution of various macromolecules and nanoparticles. By using an ion trap coupled to a CO2 

laser, photoinduced dissociation of such macroions can be studied at the single ion level giving uniquely ac-

cess to intrinsic features such as fragmentation patterns and unimolecular dissociation activation energy. 
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1. INTRODUCTION 
 

Mass is a critical feature of compounds related to 

their quantity of matter, their inertia, as well as their 

energies. To measure mass one can use a scale or a 

balance, both of which rely on Earth's gravity. The 

balances we use today in our laboratories can even 

detect masses down to 10-7 g but this measurement 

method becomes inadequate below this limit. Although 

this low mass can be measured by mass spectrometers 

that use electric or magnetic field to separate ionized 

compounds according to their mass-to-charge (m/z) 

ratio. However conventional mass spectrometry (MS) 

has limitations for weighing macroions with masses 

higher than one megadalton (1 MDa or 10-18 g) [1]. 

Above this limit, mass-to-charge (m/z) spectra become 

unsolvable due to the fact that high mass ions may 

carry an unresolvable distribution of charges. Moreover 

large ions may not all have exactly the same mass due 

to sample heterogeneity (i.e. polydispersity), residual 

adsorbates such as water molecules and counter ions. 

One solution to overcome these limitations is to 

measure both the mass-to-charge ratio (m/z) and the 

charge (z) for each ion. This single ion mass spectrome-

try enables one to construct a histogram of mass yield-

ing the true mass distribution. A convenient way to 

measure the charge of individual ions is to use image 

charge detection.  A multi-charged ion in the proximity 

of a conductive surface impresses on it an equal and 

opposite image charge. This approach was pioneered by 

Shelton in 1960 for characterizing multiply charged 

microparticles [2]. Based on this concept of image cur-

rent detection, charge-detection mass spectrometry 

(CD-MS) coupled to electrospray ionization (ESI) was 

introduced by Benner and coworkers in 1995 for weigh-

ing macroions with masses higher than one megadal-

ton.3 The passage of a multicharged ion through the 

detection tube induces on it a voltage proportional to 

the charge of the ion and inversely proportional to the 

capacity of the system. The duration of this induced 

signal is equal to the time-of-flight (ToF) of the ion 

through the detector. By measuring simultaneously 

velocity and charge of individual ions, and together 

with measuring the acceleration voltage, one can com-

pute the mass of the ion. This allows one to extend the 

limit of conventional mass spectrometry towards high 

mass compounds, as demonstrated for large DNA 

strands [4, 5], viruses [6, 7], liquid droplets [8] and 

macropolymers [9, 10]. 

While a single stage MS experiment determines the 

mass of an analyte, tandem MS (MS/MS) can provide 

information on its structure. Typical MS/MS experi-

ments involve mass selection of the ion of interest in 

the first MS stage, excitation of the ion followed by its 

dissociation and mass analysis of the resulting frag-

ment ions in the second MS stage. MS/MS has been 

used to elucidate the structure of a variety of small to 

medium-sized molecular ions. Due to the difficulty of 

detecting large size ions, MS/MS on compounds of 

megadalton (MDa) molecular weight is almost an un-

explored field yet. We recently implemented tandem 

mass spectrometry for experiments on single elec-

trosprayed ions from compounds of megadalton molecu-

lar weight, using two charge detection devices (CDDs) 

[11] This paper briefly describes the mass spectrometry 

developments for mass and structural determination of 

nanoparticles. 
 

2. WEIGHING, MANIPULATING AND FRAG-

MENTING SINGLE NANOPARTICLES IN THE 

GAS PHASE 
 

2.1 Instrumentation 
 

We developed a custom-built tandem charge 

detection mass spectrometer (CD-MS/MS) composed by 

an electrospray ionization source (ESI) coupled to two 

CDDs. The ESI source generates highly charged 

macroions which are guided by an ionic train to the mass 

spectrometer (Figure 1). Ions are guided up to a vacuum 

stage chamber (~10-6 mbar) which contains two identical 

CDDs used as a tandem mass spectrometer. Each CDD 

consists of a conductive tube collinear to the ion beam 

and connected to a field-effect transistor (JFET). The 

picked up signal given by the passage of a single ion 

through the detection tube is amplified by a low-noise 

charge-sensitive preamplifier and then shaped and 

differentiated by a home-built amplifier.  

http://nap.sumdu.edu.ua/
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Fig. 1 – Experimental setup for tandem charge detection mass 

spectrometry (CD-MS/MS). (inset) Photo of the gated 

electrostatic ion trap composed by a charge detection device 

surrounded by electrodes. 
 

The signal is recorded with a waveform digitizer 

card. The data are transferred to a desk-top computer-

where they are analyzed with a custom-written user 

program. Calibration in charge was performed using a 

test capacitor that allowed a known amount of charge 

to be pulsed onto the pick-up tube.  

The first CDD is used in a single-pass mode and al-

lows ions to be selected and measured in the second 

CDD. In the single-pass mode, the picked up signal 

from each single ion composing the sample generated 

in the electrospray source is measured. Electrical noise 

limits the charge measurements in CD-MS. A root 

mean square (rms) noise of ± 250 e is usually obtained, 

and a precision in charge measurement of about ~15%. 

In addition to the reduction of noise in the charge 

measurement circuit, an approach that improves the 

limit of the charge measurement is to re-measure the 

charge on individual ions by using an array of charge 

detection devices or electrostatic ion trap. However, the 

moderate precision in charge measurement is largely 

compensated by the high count rate that can be 

achieved (1000 ions/s). From the analysis of each wave-

form one can thus rapidly determine, knowing the 

acceleration voltage, the mass of each single ion that 

has travelled through the tube. 

 The second CDD is used as a gated electrostatic ion 

trap, as proposed by Benner [12]. The conductive tube 

surrounded by two ion mirrors (inset Figure 1) and 

preceded by an ion gate. Ions are selected both in m/z 

and z by synchronisation of the first CDD and the ion 

gate. A selected ion can be trapped between the 2 ion 

mirrors if correct voltages are applied on the electrodes 

of the ion mirror. During the trapping time a continu-

ous wave CO2 laser can be used in a synchronized 

manner to irradiate the trapped ion through a ZnSe 

window for ~50 ms. 
 

2.2 Molecular weight determination of  

nanoparticles  
 

In the single-pass mode each single ion composing 

the sample generated in the electrospray source can be 

detected and measured. On this basis mass distributions 

of synthetic NIST standard polystyrene particles (100 

nm diameter) were accurately determined. Obtained 

averaged molar masses can be con verted in diameter of 

spherical particles and are in good agreement with those 

 
Fig. 2 – a) mass-charge map obtained in CD-MS of 100 nm 

diameter NIST standard polystyrene bead.  b) TEM image of 

Au@citrate nanoparticles (J. Kimling, M. Maier, B. Okenve, V. 

Kotaidis, H. Ballot and A. Plech, et al., J. Phys. Chem. B 110, 

15700 (2006)) ; average diameter ca 40 nm) and corresponding 

molar mass distribution obtained in CD-MS. 
 

given by the supplier. The versatility of the electrospray 

source to “make fly elephants” [13] allowed us to study a 

large panel of nano-objets such as gold and silica nano-

particles. As an example, Figure 2b shows mass distri-

butions obtained for a colloidal suspension of gold nano-

particles. An important aspect of charge detection MS is 

that charge of NPs can be measured simultaneously 

with their mass. This allowed to us to explore the charg-

ing capacity of NPs in the gas phase14 and the correla-

tion between the charge of particles in solution and in 

the gas phase.15 

 

2.3 Trapping and infrared multi-photon  

dissociation of single megadalton ions 

 

A single macroion selected in mass and charge can 

be trapped in the second CDD during several tens of 

milliseconds, which corresponds to several hundreds of 

oscillations. This generates an electric wavelet on the 

detector. The first benefit is that we can re-measure 

charge and time-of-flight as many times as the ion 

oscillates in the trap improving the z and m/z precision 

of CD-MS measurements. Fig. 3a shows the experi-

mental raw time domain signal for a trapped ion creat-

ed by a single highly charged electrospray ion of PEO 

(mass of 20 MDa and 1550 charges) travelling back and 

forth through the ion trap. The Fourier transform of 

this signal (inset in Fig. 3a) shows a peak at 13.8  kHz 

indicating the fundamental  oscillation frequency, 

which corresponds to an m/z of 12900 Da/e. The first 
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Fig. 3 – (a). Experimental raw time domain signal for a 
trapped PEO ion (mass of 20 MDa and 1550 charges). The 
inset shows the Fourier transform of the raw signal with a 
fundamental oscillation frequency of 13.8 kHz and a first 
harmonic also seen at 27.6 kHz. Experimental raw time 
domain signal for a single trapped PEO ion under continuous 
irradiation of the CO2 laser (14.6 W/cm2). The onset and 
disappearance times (to and td) are shown as arrows. 

 

harmonic can be seen at 27.6 kHz. This single ion was 

trapped for ∼ 52 ms, during which it cycled ∼750 times 

through the detector tube. The shape and amplitude of 

the raw signal are roughly the same, which means that 
no significant charge loss is observed during the trap-

ping time. During their storage time, single ions can be 
irradiated by the CO2 laser. The CO2 laser provides 

low-energy IR photons. Macroions can be efficiently 
heated by multiple absorption of IR photons (infrared 

multi-photon dissociation (IRMPD) experiments) [16, 
17]. As the laser is switched on during the ion trapping 

time, drastic changes are observed both in the trapping 

duration and the shape of the oscillations. As shown in 

Figure 3b, for selected raw time domain signals for a 
single trapped ion, under continuous irradiation by the 
CO2 laser (14.6 W/cm2). This trace corresponds to “stair-

case” types of raw time domain signals. The ion has a trap-

ping time that does not exceed 20 ms. The precursor 
ion suddenly loses a large amount of charge (~35% of 

initial charge) after ~8.5 ms, then the amplitude of the 
charge remains almost constant for ~8 ms before the 

ion can no longer be detected. Another type of raw time 
domain signal referred to as “funnel” is also often ob-

served. During the last stages, the total charge gradu-

ally decreases before the ion is lost or cannot be detect-
ed [18, 19] The activation energy associated with the 

dissociation of megadalton-size ions was estimated, in 
the frame of an Arrhenius-like model, by analyzing a 

large set of individual ions in order to construct a fre-
quency histogram of the dissociation rates for a collec-

tion of ions [19]. 
 

3. CONCLUSION  
 

CD-MS and CD-MS/MS working in the single-pass 
and multi-pass modes, respectively, provide unique data 

on compounds of molar mass ranging from megadalton 

to gigadalton. In particular the determination of molar 
mass distribution of various nano-objects has been 

demonstrated and this key characterization may be 
extended to the so-called „nanoworld‟. The implementa-

tion of an electrostatic ion trap significantly improves 
the precision of mass measurements and allows one to 

study kinetics of dissociation of large macroions. In par-
ticular, IRMPD was found to be a promising tool for 

studying unimolecular dissociation of large macroions at 
the single ion level. 
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